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Abstract—Quantum fluctuations in a laser with two different relaxation times are considered, i.e., transverse
(polarization relaxation) and longitudinal (population relaxation) in the case in which the cavity transmission
band half-width is much smaller than the transverse width and much larger than the longitudinal one. The
lasing frequency detuning from the transition frequency of a two-level system is assumed to be arbitrary in this
case, and it is necessary to take into account the contribution of two-particle correlators into the dispersion
and laser linewidth. The results are considered as applied to a semiconductor laser.

DOI: 10.1134/S0030400X16050179

INTRODUCTION
The contribution of quantum fluctuations of the

electromagnetic field amplitude and phase and the
medium into the semiconductor laser linewidth has
been found in [1]. It has been shown that this contri-
bution increases the laser linewidth by about an order
of magnitude compared to the contribution of sponta-
neous radiation. The following simplifications were
made during the problem solution. All calculations
were carried out at the maximum of laser gain line;
corrections quadratic in the density matrix elements
were omitted during calculation of the photon diffu-
sion coefficients [2], since their contribution is insig-
nificant. Another simplification was connected with
ignorance of two-particle correlators, though they
should be taken into account if the cavity transmission
linewidth is larger than the atom linewidth. The case
in which ,  (  is the cavity transmis-
sion line half-width,  s–1;  is the inverse

time of relaxation in semiconductor bands,  s–1;
and  is the interband relaxation time, 

 s) is implemented in a semiconductor. The
effect of correlations for ordinary two-level systems
was considered in [2] (στ0 @ 1, Γ–1 = τ0) and in [3]
( , ). The lasing frequency detuning
from the transition frequency was considered to be
zero in works [2, 3]. The contribution of collective
effects into the laser radiation amplitude f luctuations
was found in [3]. Appearance of an additive term pro-
portional to  in the photon distribution function
was proved. The question of linewidth was not consid-

ered. In work [4], it has been mentioned but not
proven that allowance for correlation effects does not
contribute to the laser linewidth at , .

Therefore, there is a need in solution of the prob-
lem about the effect of correlators on the amplitude
and phase f luctuations in a laser if , 
for ordinary two-level systems with allowance for arbi-
trary detuning of the lasing frequency from the transi-
tion frequency. Transition frequency  is fixed in
this case; hence, the set of equations for corresponding
density matrices can be reduced to algebraic.

The results are discussed as applied to a semicon-
ductor laser. In this case, interband transition fre-
quency , where  is the electron
energy in the conduction ( ) and valence ( ) bands
with wavenumber . Summation of the corresponding
parameters over l is reduced to integration with the
density of the number of transitions with the frequency

 [1]. Thus, the simple algebraic set of equations for
calculating correlators [2–4] turns into a set of integral
equations, and the calculation of corrections is diffi-
cult due to allowance for correlators. However, using
the exact solution for ordinary two-level systems, one
can ascertain how the correlators affect the semicon-
ductor laser linewidth.

BASIC EQUATIONS
Let us consider a model of a single-mode laser. It is

represented by a quantum oscillator with the fre-
quency ω, which interacts with a system of N fixed
two-level atoms. The quantum laser theory was devel-
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oped in [2–5]. We follow the method used in [2] (see
also [5]). According to [2, 5], there is a set of equations
of combined density matrices of the oscillator and
atoms:

 (1)

 (2)

The bar indicates complex conjugation, P– =
, , , , 

is the lasing frequency,  is the cavity frequency, 
is the atom transition frequency, and ,

 is the overpopulation in the absence of field.
Set of equations (1) and (2) is written in the coher-

ent state representation. In this representation, photon
annihilation operator a is diagonal, ,

 is the quantum oscillator density matrix in the
Glauber representation, and  is the density matrix
of the kth atom ( ) for states  and . Actu-
ally,  is the combined density matrix for the corre-
sponding atom transition and quantum oscillator,
since it depends on D;  is the irreducible part of
the combined two-particle density matrix of the ith
and kth atoms and quantum oscillator. Again,  is the
inverse time of photon relaxation in the cavity,  is the
coupling constant: ,  is the
photon electric field strength, d is the dipole matrix
element of a resonance transition,  if the cavity field
volume,  is the longitudinal time of overpopulation
relaxation,  is the transverse time which corresponds
to the relaxation of an off-diagonal element of the
atom density matrix. Set (2) includes only terms pro-
portional to  and ; terms neglected do
not affect the photon diffusion coefficients. A set of
equations for  has been derived in [2] and is
given below. In the case  ( , ,

), it is sufficient to find a correlator in the
photon and atom distribution ; if the condition is
violated, correlators in distributions of different atoms
are also to be found. In this case, the relaxation in the
atom system runs more slowly than in the oscillator
and the equation for the (radial) photon distribution
function is not reduced to the diffusion equation. If
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consider this function to be already relaxed to the
steady state, then the diffusion equation can be derived
for the phase, since the mean field attenuation can be
considered as a slow quasi-stationary process, with the
characteristic time much longer than . The prob-
lem has been solved in [2] for the case ,

. In this work, we consider an intermediate
case in which , . This problem was
considered in [3] (see also [4]) for the case of zero
detuning, where the contribution of two-atom correla-
tors into the laser linewidth is exactly zero, and the
contribution into the photon distribution function
variance linear depends on . Below, we considered
the detuning nonzero and assume that all atoms are in
equal conditions in the upper state in the absence of
radiation; therefore, summation over atoms is reduced
to multiplication by N (N is the number of atoms in the
system). One can prove [3] that  and

 are negligible if , and the

corresponding set of correlator equations includes
only equations for

,

where

In the steady state, density matrix  depends
on , i.e.,  (see expansion (13) below
and [1]). Under this condition,  or gP– =

 follow from Eq. (1), and the set of equations
for the macroscopic parameters P–, P3 =

 can be written in the form

 (3)
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in the steady state. Taking into account the above said,
the set of equations for two-particle correlators can be
reduced to the following:

 (5)

.

Resolving set (5) for , we derive

,

where the determinant of set (5)

.

Substituting the equality  in
Eq. (4) and distinguishing the real and imaginary
parts, two equations can be derived:

, (6)

. (7)

Comparison of Eqs. (6) and (7) provides the equa-
tion for lasing frequency :

or .

If , then ; i.e., .

Let us introduce the designations ,

, where  is the lasing parameter, and

assume that ; then set (3) and (4) can be
rewritten as
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Solving Eqs. (8) and (9) in the principal order [2]
above the threshold, we have

, .

In this region, the photon distribution function is
Gaussian

,

and

. (10)

Since  is small, then, suggesting

, (11)
the set of algebraic equations

 (12)

can be derived instead of Eqs. (8) and (9) in the first
order with respect to .

Let us write  and  instead of  and , and

change  to , ,  in the cal-

culations of A and B. Let us now calculate :

We derive

.

Substituting B in Eqs. (12), we find

.

From this (since ),

,

where  means averaging with the density matrix
.

CALCULATION OF LASER LINEWIDTH
The mean field attenuation time due to quantum

fluctuations of the phase is much longer than ;
hence, this time can be calculated by the diffusion
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equation. For this, let us assume that the generation
reaches the steady-state region, i.e., the radial distri-
bution function relaxed to the state . Expanding

 in a Fourier series, we derive [1, 2]:

, (13)

and represent  as

,

where  has been found from Eqs. (3) and (4) with
.

Let us represent  as

. (14)

Substituting Eqs. (13) and (14) into Eq. (1), we
derive for 

, (15)

where

 (16)

or

Variations in  are limited to the generation region:
, where  is the gain parameter at the line

center . Let us find the solution of Eq. (15)

in the form , ;  is the con-

stant determined by the initial condition. The mean
field ,

 (17)

is the laser linewidth.

A SEMICONDUCTOR LASER
Let us consider how all that was discussed above

can be applied to a semiconductor laser. The further
consideration supplements the results of work [1].
Therefore, we are to exactly follow designations from
[1] (see also [6]) without their explanation, except for
this is necessary. As has been already mentioned, it is
hard to find corrections to the diffusion coefficients
due to collective effects, since algebraic set of equa-
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tions (5) turns into a set of integral equations. How-
ever, it is clear that these corrections are proportional
to ; i.e., we suppose that the terms that include
correlators  and  are small with respect

to  .
Let us trace how the diffusion coefficient for phase

(see Eq. (16) depends on the lasing frequency detuning
relative to the semiconductor laser gain maximum.
For this, let us introduce the parameters  and  [1]:

 (18)

is the density of electrons injected into the transmis-
sion band,

, (19)

where, according to [1],

, (20)

,  is the lasing frequency equal to  and
 is the electron distribution function in the valance

and transmission bands. According to [6], we have

,

, where  is the concentration under
transparency condition, ,

,

, (21)

, ,  is the band gap, 

is the gain line half-width, and  is the gain line max-
imum. All estimates and calculations in [6] were car-
ried out for , where the ratio of carrier masses

, and room temperature.

Again, the equations for  and  [1] with allow-
ance for the correlators can be written as
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, , where  is the pumping cur-

rent,  is the electron charge,  is the semiconductor
volume, ,  is the carrier
mass in the transmission band,  is the Boltzmann
constant,  is the temperature, and

.

Substituting Eq. (23) in Eq. (22), we derive

 (24)

.

Finally,

. (25)

According to the above results, the correction con-
nected with the correlation effects can be considered
proportional to . Since we assume that the lasing
frequency detuning relative to the gain maximum is
small, we consider it only in the terms that include
correlators. Other terms are designated as  and have
been calculated in [1]. The second term in Eq. (25)
contributes into the phase diffusion coefficient pro-
portional to (see Eq. (16))

, (26)

where . The term that determines the
phase diffusion should be even in detuning; therefore,
we can take

(27)

where  is the phase diffusion coefficient. Thus, the
contribution of collective effects into the semiconduc-
tor laser linewidth at the gain line maximum is exactly
zero, like for the case of ordinary two-level systems.

CONCLUSIONS
The semiconductor laser linewidth connected with

quantum fluctuations of the electromagnetic field
amplitude and phase and the medium was found in [1]
with the use of quantum laser theory [2–4] neglecting
the correlation effects. The corresponding diffusion
coefficients were calculated for the lasing frequency at
the laser gain maximum. The laser linewidth calcu-
lated turned out to be ten times higher than the contri-
bution due to spontaneous radiation. The linewidth
should be twice as high so as to coincide with the
experiment [7]. Though the correction due to correla-
tion effects is exactly zero at the gain line maximum,
the parameter  is extremely high (103–104). There-
fore, it should be interesting to determine how the
semiconductor laser linewidth depends on the lasing
frequency detuning from the gain maximum.

Using Eq. (17) for the radiation linewidth for two-
level systems, let us make the following rough esti-
mate. Let us determine detuning values at which the
term independent of the detuning becomes equal to
the term that depends on it. We find 2ε2(η –
1)  or . Assuming that

, , we find .
Thus, to exclude the contribution of collective effects,
extremely accurate tuning to the gain line maximum is
required.
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