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Abstract—Oral cancer is an aggressive and rapidly progressive disease. The oral cavity is home to over 700
species of microorganisms that regulate metabolism, immune function, and health. There are three types of
mechanisms by which bacteria may participate in carcinogenesis. First, bacteria cause chronic inflammation,
which stimulates the production of cytokines, including interleukins, interferons, and tumor necrosis factor.
Second, bacteria can interact directly with host cells by secreting toxins or by binding to membrane receptors.
Finally, the production of metabolites by bacteria may also contribute to carcinogenesis. The importance of
the bacteria level and composition in the transition of oral precancerous lesions to cancer has been demon-
strated. The relationships of changes in microbiome composition with smoking, inflammation in healthy
individuals, as well as with the development of oral cancer in patients, have been studied.

Keywords: microbiome, oral cancer, inflammation, smoking, immunity
DOI: 10.1134/S0026893324020092

INTRODUCTION
Oral cancer (OC) is one of the most common

malignant neoplasms of the head and neck organs. [1].
The number of newly diagnosed cases of this patho-
logy in Russia over the past 10 years has increased by
17% [2]. In addition to high morbidity, OC is charac-
terized by an aggressive course; every year, about
180000 people worldwide die from OC, including
people of working age [1, 2].

The human microbiota is an evolutionarily devel-
oped ecological system of various microorganisms
inhabiting the open cavities of the body [3]. Microor-
ganisms are an important link in the regulation of
metabolism, immune function, and human health [3,
4]. It is believed that bacteria most strongly affect the
cells of the intestines, skin, and mucous membranes
[4]. The mucous membrane provides host protection
from invading pathogens and also creates an environ-
ment for beneficial bacteria [5]. Disruption of the
mucous membrane, for example by infection with
harmful bacteria, can contribute to an inflammatory
and carcinogenic environment [6].

Bacteria play an important role in the pathogenesis
of human diseases, including carcinogenesis [5]. Cur-
rently, active study of the influence of pathogenic
microorganisms on cell proliferation, transformation,
genetic instability, and tumor microenvironment
occurs [7].

Three types of carcinogenic effects of bacteria on
host cells have been described. Bacteria can contribute

to carcinogenesis both through direct interaction with
host cells and indirectly, through the synthesis of tox-
ins and metabolites, as well as influencing the immune
system and stimulating inflammation [3, 5, 8‒10]
(Fig. 1).

THE DIRECT IMPACT OF THE MICROBIOME 
ON HOST CELLS

When interacting directly with a host cell, bacteria
secrete toxins, bind to membrane receptors and induce
various signaling cascades [3, 10]. For example, Fuso-
bacterium nucleatum binds to host epithelial and endo-
thelial cells via the adhesion molecule FadA
(F. nucleatum adhesin A), thereby ensuring the induc-
tion of pro-inflammatory signaling pathways medi-
ated by nuclear factor NF-κB and IL6, and promoting
OC invasion [11, 12]. As well, F. nucleatum may induce
the epithelial–mesenchymal transition (EMT) [13].
Direct interaction between F. nucleatum and E-cad-
herin leads to DNA damage during epithelial cell pro-
liferation, their acquisition of stemness and loss of cell
polarity due to increased expression of E-cadherin/β-
catenin-induced transcription factors [14, 15].
Another bacterium, Helicobacter pylori, bring the
endothelial cell cytotoxin CagA (Cytotoxin-associated
gene A) using the type IV secretion system (T4SS,
Type IV Secretion System) [16]. CagA binds to E-cad-
herin and causes accumulation of β-catenin, which in
turn leads to transdifferentiation of gastric epithelial
205
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Fig. 1. Mechanisms of microbiome influence on host cells. ROS, reactive oxygen species; BFT, Bacteroides fragilis Toxin; CagA,
Сytotoxin-associated gene A; CDT, Cytolethal Distending Toxin; FadA, Fusobacterium nucleatum adhesin A; QSP, Quorum
Sensing Peptides; T3SS, Type III Secretion System; T4SS, Type IV Secretion System.
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cells and the development of precancerous intestinal
metaplasia [17]. The bacterium Bacteroides fragilis
secretes metalloproteinase BFT (Bacteroides Fragilis
Toxin) and causes chronic inflammation and damage
to intestinal tissues by altering intestinal cell tight junc-
tions through cleavage of E-cadherin and activation of
Wnt/β-catenin/NF-κB signaling pathways [18‒20].
Salmonella enterica, using the type III secretion sys-
tem (T3SS, Type III Secretion System), transfers the
effector protein AvrA into epithelial cells, which pro-
motes the activation of the MAPK, Wnt/β-catenin
and JAK/STAT signaling pathways, EMT, prolifera-
tion, cell transdifferentiation, cell cycle arrest and
inhibition of apoptosis [21, 22]. Bacillus sp., Entero-
coccus faecium and Escherichia coli produce Quorum
sensing (QSP) system peptides, which influence host
epithelial cells through growth factors, promote tumor
formation and metastasis of tumor cells [23]. Thus,
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QSP peptides synthesized by Bacillus are capable of
inducing invasion, EMT, and angiogenesis [23, 24].

INDIRECT IMPACTS OF THE MICROBIOME 
ON HOST CELLS

Bacteria can initiate carcinogenesis by metaboliz-
ing various bioactive molecules secreted by host cells
[3]. Thus, bacterial lipopolysaccharides and acetate
stimulate EMT and angiogenesis, promoting the
development of tumors [25]. Microorganisms metab-
olize host-secreted compounds such as secondary bile
acids (deoxycholic and lithocholic acids) and contrib-
ute to the development of colorectal cancer and hepa-
tocellular carcinoma [25]. Gallic acid of microbial ori-
gin induces mutations in the TP53 gene and, as a con-
sequence, the occurrence of malignant tumors in the
distal intestine [26].

Another mechanism for the indirect effect of the
microbiome on host cells is the bacterial delivery sys-
tem, which consists of outer membrane vesicles of pre-
dominantly Gram-negative bacteria. This system
allows bacteria to transfer genetic material, immuno-
modulatory molecules, virulence factors, and toxins
into the host’s bloodstream [3, 27‒29].

The Effect on the Host Cell Genome

Many bacteria, in the process of evolution, have
acquired the ability to damage DNA, thereby inducing
genetic changes and contributing to carcinogenesis
[30, 31]. E. coli, B. fragilis, and H. pylori, Enterococcus
faecalis and proteobacteria cause DNA double-strand
breaks, aneuploidy, cell cycle arrest, and abnormal cell
division [32]. Colibactin and the cytolethal toxin CDT
(Cytolethal Distending Toxin) mechanically damage
DNA, while BFT acts indirectly by increasing the
level of reactive oxygen species [32, 33]. DNA strand
breaks and genomic instability allow bacterial DNA to
integrate into the genome of the host cell. Bacterial
genes initiate the transformation of healthy cells into
tumor cells, stimulating the activity of oncogenes and
inhibiting tumor suppressor genes [34].

Bacteria can make epigenetic changes to the host
genome. Thus, exposure to commensal microbiota
leads to local changes in the methylation of DNA reg-
ulatory elements in intestinal epithelial cells [35]. Bac-
terial microRNAs penetrate human cells and regulate
gene expression in them. The bacterium F. nucleatum
promotes increased proliferation and invasiveness of
colorectal cancer cells and carcinogenesis through the
TLR4/MYD88 signaling pathway, which leads to acti-
vation of NF-κB and increased miR21 expression in
intestinal mucosal cells [36].

The ability of microbes to both directly and indi-
rectly cause DNA damage and genome instability
makes the microbiome both a potential risk factor for
cancer and a target for anticancer therapy [37‒39].
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Interaction with the Immune System

Immune-bacterial interactions occur on mucosal
surfaces, lymphoid organs, and tumor microenviron-
ments [3]. Numerous bacteria induce the develop-
ment of a protumor immune response [40‒42].
H. pylori causes chronic inflammation by promoting
the secretion of IL6, IL1β, TNFα, IFNγ, and the
toxin VacA (Vacuolating cytotoxin A) [43, 44]. Mem-
brane vesicles produced by F. nucleatum cause chronic
inflammation by stimulating the secretion of IL6, IL8,
IL18, and TNFα by colon epithelial cells [15, 45].

Intratumoral bacteria can directly inhibit antitu-
mor immunity by suppressing the infiltration of cyto-
toxic immune cells and blocking their ability to kill
tumor cells [40, 46, 47]. Decreased numbers of T cells
in the tumor microenvironment result in a weakened
immune system and inability to target a tumor [3]. In
addition, commensal bacteria recruit large numbers of
inflammatory cells, including tumor-associated mac-
rophages, regulatory T cells, granulocytes, and
myeloid-derived suppressor cells, resulting in a proin-
flammatory tumor microenvironment. [41, 48‒50].

Colonization of the stomach by the bacteria
H. pylori causes an inflammatory response and
recruits dendritic cells, macrophages, neutrophils,
and lymphocytes to the gastric mucosa [44]. Erythro-
bacter ramosus and B. fragilis located in the ileum pro-
mote the induction of follicular T helper cells through
the activation of dendritic cells and the release of IL1
and IL12 [51]. Bacteria entering the mucous mem-
branes affect the activity of Th17 cells [52‒54], play-
ing an important role in the antitumor immune
response [55]. The bacterium Porphyromonas gingiva-
lis expresses chemokines such as CCL2 and CXCL2,
which recruit myeloid suppressor cells and promote
tumor progression [56, 57]. As well, P. gingivalis and
F. nucleatum activate the binding of PD-L1 to PD-1,
which leads to inhibition and apoptosis of T cells [56,
58]. F. nucleatum, interacting with the TIGIT receptor
of immune cells, suppresses the activity of NK and
T cells, creating a pro-inflammatory microenviron-
ment that supports the progression of colorectal can-
cer [59]. In addition, this bacterium helps to increase
the population of CD11b myeloid cells, tumor-associ-
ated neutrophils and macrophages in tumors of vari-
ous locations [57].

Thus, bacteria secrete virulence factors, cause
physical binding-induced signaling, and recruitment
of immune cells, which together may contribute to
carcinogenesis. Understanding these mechanisms is
critical for the development of new methods for diag-
nosing and treating cancer [3, 10].

THE ROLE OF THE MICROBIOME 
IN THE DEVELOPMENT OF ORAL CANCER

A number of studies have described the role of the
microbiome in the development of oral diseases,
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including OC [60‒62]. Well-established risk factors
for OC include smoking, alcohol, and chronic inflam-
mation. These factors also influence the oral microbi-
ome, which, in turn, can contribute to the occurrence
of OC, its progression, or, conversely, regression.

Normal Oral Microbiome

The Expanded Human Oral Microbiome Database
contains information on approximately 772 species of
prokaryotic microorganisms and is second only to the
gastrointestinal microbiome. It is important to
emphasize that the human microbiome can be divided
into two parts, the main and the variable parts. The
core microbiome consists of predominant species that
exist in “healthy conditions,” while the variable
microbiome evolves in response to lifestyle and nutri-
tional patterns, and also depends on the genotypic
characteristics of individuals [63‒66].

Profiling of 16S rDNA isolated from a “healthy”
oral cavity identified six types of bacteria: Bacillota
(formerly Firmicutes), Actinomycetota (formerly Act-
inobacteria), Pseudomonadota (formerly Proteobac-
teria), Fusobacteriota (formerly Fusobacteria), Bacte-
roidota (formerly Bacteroidetes), and Spirochaetota
(formerly Spirochaetes), representing 96% of the total
number of microorganisms [67]. However, Bacillota
accounts for a maximum of 36.7%, followed by Bacte-
roidota (17.1%), Pseudomonadota (17.1%), Actino-
mycetota (11.6%), Spirochaetota (7.9%), and Fuso-
bacteriota (5.2%) [68]. The main genera of bacteria
inhabiting a healthy oral cavity include Gram-positive
Abiotrophia, Actinomyces, Bifidobacterium, Corynebac-
terium, Eubacterium, Lactobacillus, Peptostreptococ-
cus, Propionibacterium, Pseudoramibacter, Rothia,
Streptococcus, Stomatococcus, and Gram-negative
Campylobacter, Capnocytophaga, Desulfobacter, Desul-
fovibrio, Eikenella, Fusobacterium, Hemophilus, Lep-
totrichia, Moraxella, Neisseria, Prevotella, Selemonas,
Simonsiella, Treponema, Veillonella, and Wolinella
[63]. Although all of these bacteria are commensal,
some of them are considered pathogenic. The transi-
tion of commensal microflora to pathogenicity often
depends on the number of these microorganisms in
the composition of oral biofilms [69].

Various factors such as dietary habits, tobacco and
alcohol use, stress, hormonal imbalance, puberty,
poor oral hygiene, diabetes and gum disease disrupt
the structure of the local bacterial community and can
lead to the development of cancer [64, 65].

Changes in the Microbiome Due to Smoking

In the microbiome of active smokers, there is a sig-
nificant decrease in the abundance of Pseudomonad-
ota and an enrichment of Bacillota and Actinomyce-
tota compared to individuals who have never smoked
[70]. However, changes in the microbiome associated
with smoking have a temporary effect; former smokers
have the same general composition of the oral micro-
biome as individuals who have never smoked [70].

There are several potential mechanisms by which
smoking may alter the microbiome profile: increased
salivary acidity [71, 72], formation of anaerobic condi-
tions [73], influence on the adhesion of bacteria to the
surfaces of mucous membranes [74], and impaired
host immunity [75].

Currently, there is a trend towards the use of elec-
tronic cigarettes, which also affect the microflora of
the oral cavity: the content of Porphyromonas and Veil-
lonella species increases; beta diversity, which charac-
terizes the similarity/difference of species composi-
tion, changes significantly compared to those who
have never smoked or smoked tobacco cigarettes [76,
77]. Smoking e-cigarettes significantly increases the
levels of IL-6 and IL-1b in saliva, making epithelial
cells more susceptible to infection [76].

The risk of developing OC, oropharynx and hypo-
pharynx cancer in smokers is 4–5 times higher than in
nonsmokers. Alcohol acts synergistically with
tobacco, resulting in an approximately 35-fold
increase in the risk of OC in heavy smokers
(>2 packs/day) who drink alcohol (>4 drinks/day)
[78].

Changes in the Microbiome during Inflammation

If the change in the microbial community during
smoking is secondary, then during inflammation a
change in the microbiome often becomes its cause.
The main oral infections include periodontitis and
caries.

Since the 1950s, the microbiota of the periodontal
pocket has been studied using cultural methods.
Researchers sought to identify microbial species that
are critical to the onset and progression of the disease.
Historically defined microorganisms of the “red com-
plex” are P. gingivalis, Tannerella forsythia (previously
Bacteroides forsythus), and Treponema denticola [79].
These species were considered most associated with
deep periodontal pocket disease. The cluster of species
with a less stringent association with periodontal dis-
ease, identified as the “orange complex,” includes
Prevotella spp., Fusobacterium spp., and Parvimonas
micra (previously Peptostreptococcus micros) [79].

A special role in the pathogenesis of periodontitis is
assigned to P. gingivalis, a small anaerobic bacterium
of the oral cavity that causes polymicrobial inflamma-
tory disease and associated systemic conditions [80].
Thus, one low-abundance species can disrupt the
homeostasis of the entire oral microbiome, causing
inflammation. This concept has been called the poly-
microbial synergy and dysbiosis model. According to
this model, periodontitis is initiated by a synergistic
and dysbiotic microbial community rather than by
select pathogens such as the “red complex.” One of
the fundamental requirements for the emergence of a
MOLECULAR BIOLOGY  Vol. 58  No. 2  2024
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potentially pathogenic community is the ability of cer-
tain species, called “keystone pathogens,” to modulate
the host response in such a way as to weaken immune
surveillance and tip the scales from homeostasis to
dysbiosis [81]. On the other hand, the development of
pathogenic microflora requires the expression of vari-
ous molecules, for example, corresponding adhesins,
cognate receptors, proteolytic enzymes, and pro-
inflammatory surface structures/ligands, which in
combination act as community virulence factors to
nutritionally support the pro-inflammatory microbial
community [81].

All this makes us think about the possible specific
prevention of periodontitis through vaccination or the
use of probiotics. It has been shown that human
immunization with monoclonal antibodies to P. gingi-
valis temporarily prevents colonization by these
microorganisms [82]. It has also been found that peri-
odontitis increases the likelihood of leukoplakia for-
mation in the oral cavity in a dose-dependent manner.
[83]. Leukoplakia is the most common precancerous
lesion of the oral cavity, whose prevalence in the world
ranges from 1.1 to 3.6% [84]. Patients with periodonti-
tis, even those who have never smoked, have a several
times higher risk of developing cancer than healthy
people. [85].

Changes in the Microbiome in Oral Cancer

Recognized risk factors for OC include tobacco
use, alcohol use, betel nut use, and older age. How-
ever, about 15% of all cases of OC are not associated
with any known risk factors [86]. This has led to spec-
ulation about other possible contributing factors,
including the microbiome.

Many studies have compared the microbiome pro-
file in tumor tissue from patients with OC and in nor-
mal tissue from healthy donors. Despite the great het-
erogeneity of the results, it was possible to identify a
number of microorganisms whose content increases
with OC: Fusobacterium, Streptococcus, Prevotella,
Peptostreptococcus, Porphyromonas gingivalis, Capno-
cytophaga gingivalis, and T. denticola [87‒89]. Single
studies have been published showing that in healthy
individuals, compared with OC patients, S. gordonii
[90], S. mitis [91], Veillonela [62], Neisseria [92], Lau-
tropia [62], and Hemophilus parainfluenzae may pre-
dominate [91]. When studying the microbiome in
patients with oral leukoplakia (facultative precancer),
a specific microbiome profile was also discovered, in
particular, an enrichment of Bacillota and Actinomy-
cetota [93].

The results of experimental studies conducted on a
mouse model have been published, confirming the
role of at least the bacteria P. gingivalis and F. nuclea-
tum in OC development [94, 95]. These studies have a
similar design: mice were randomly divided into two
groups: a group receiving only the carcinogen 4NQO
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(4-nitroquinoline-1-oxide), and a group in which, in
addition to the carcinogen, mice were infected P. gin-

givalis or P. gingivalis + F. nucleatum. Both studies
demonstrated that these microorganisms contribute to
carcinogenesis: mice in the challenged group devel-
oped more and larger tumors.

One of the key characteristics of ecosystems such as
the oral microbiome is its biodiversity, which is
assessed using alpha and beta diversity indices. Alpha
diversity is an indicator of the complexity of commu-
nities, characterizing species richness and the even-
ness of the quantitative participation of species in the
community. Beta diversity characterizes the similar-
ity/difference between different groups. A number of
studies have shown that healthy areas adjacent to
tumors exhibit higher alpha diversity than tumor tissue
[96]. At the same time, data were published indicating
higher alpha and beta diversity in patients with OC
compared to healthy donors [97, 98].

The microbiome profile differs not only between
patients with OC and healthy people, it also dynami-
cally changes during tumor progression. In particular,
at the genus level, the number of Fusobacterium

increases, while the number of bacteria of the genus
Streptococcus, Haemophilus, Porphyromonas, and Acti-

nomyces decreases as cancer progresses [96, 97]. The
number of species F. periodonticum, P. micra, S. con-

stellatus, H. influenza, and Filifactor alocis gradually
increases as OC progresses from the first stage to the
fourth [97]. At the same time, the quantity S. mitis,

Haemophilus parainfluenzae and Porphyromonas pas-

teri decreases with increasing OC size and prevalence
[97]. A significant increase in the content was revealed
Prevotella, Stomatobaculum, Bifidobacterium, Peptost-
reptococcaceae Shuttleworthia and Finegoldia, and
decline in Tannerella and Fusobacterium in patients
with regional metastases compared to cases without
metastases [99].

There is currently a problem with OC rejuvenation.
Since the 1990s, the incidence of OC in patients under
45–50 years of age has been constantly increasing [1,
2, 100]. It has been hypothesized that young adults
have a distinct bacterial profile that favors tumor pro-
gression. A comparative analysis of the microbiome of
40 patients with OC was carried out, half of whom
were younger than 50 years old, the other half were
over 60 years old: the main taxa in young adults were
Betaproteobacteria, Burkholderiales, Ralstonia, Bur-
kholderiaceae, and Rhizobiales, while in patients over
60 years of age they were Enterobacteriaceae, Entero-
bacterales, Sphingobacteriia, Sphingobacteriales, and
Pedobacter [101].
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Fig. 2. Changes in the composition of the oral microbiota during the development of oral cancer.
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CONCLUSIONS

Imbalance of the oral microbiota may be a key link
through which commensal bacteria promote the
development of OC. The results of studies indicate
that the microbiome changes at the early stage of
malignant transformation and is significantly trans-
formed during tumor progression (Fig. 2). Microbi-
ome data can be used to develop new methods for the
diagnosis, prognosis, and prevention of OC, for exam-
ple, through the use of vaccines, antimicrobials, or
probiotics. Bacterial-mediated OC therapy, which
causes fewer side effects compared to conventional
methods of tumor therapy, may become a promising
direction. However, given the variability of the oral
microbiome even under normal conditions, care must
be taken to ensure that diagnostic and prognostic
approaches are reproducible and repeatable.
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transition.
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