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Currently, more than 37 million individuals worldwide are infected with the human immunodeficiency virus
(HIV). Antiretroviral therapy may control the viral infection but is incapable of eradicating it. It is important
to understand how cells respond to HIV-1 infection and what cellular factors are involved in this process to
develop novel classes of antiviral drugs. This review summarizes the current understanding of the HIV restric-
tion mechanism. We discuss the ambiguous role of HIV restriction factors in viral infection and counteraction
mediated by HIV-1 accessory proteins.
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The human immunodeficiency virus (HIV) is a
member of the family Retroviridae, genus Lentivirus,
with a long incubation period. HIV includes the fol-
lowing species: HIV-1, the most widespread and
pathogenic, and HIV-2, differing from HIV-1 in
structure and pathogenic effect. There are four groups
of HIV-1: M (Major), N (Non-M, Non-O), O (Out-
lier), and P (Putative). It is currently believed that
HIV-1 group M originated from the chimpanzee
immunodeficiency virus (SIV) at the beginning of the
XX century shown in [1]. More than 70 million people
are infected with HIV-1 group M; for 30 million peo-
ple, this disease has already led to fatal outcomes.
HIV-1 from other groups (N, O, P) also originated
from SIV (chimpanzee in group N and gorilla in
groups O and P) but occurs in humans much less fre-
quently. HIV-1 group O was found in approximately
100 thousand people in Cameroon and in neighboring
countries in [2]; group N and P viruses have been
found only in a few individuals in [3–5].

After decoding the nucleotide sequence of HIV-1,
it became clear that its genome was much more com-
plex compared to those of many animal retroviruses.
The latter genomes include the gag, pol, and env genes
encoding only structural proteins (e.g., the murine
leukemia virus (MuLV) genome). Open reading
frames uncharacteristic of other members of the fam-
ily have been found in the 3'-region of the HIV-1
genome. Here, regulatory proteins Tat and Rev and
accessory proteins Vif, Vpr, Vpu, and Nef are encoded
(in HIV-2, they also include Vpx). Tat and Rev are
necessary for HIV-1 replication in host cells: they acti-

vate transcription of genes from proviral DNA and
provide viral RNA transport from nucleus to cyto-
plasm. Accessory proteins are needed for replication
only in some types of cells, though they are commonly
believed to counteract the cellular mechanisms of
antiviral protection. It took years to find out the targets
of HIV accessory proteins: restriction factors (Fig. 1).
Although there is a considerable body of literature on
restriction factors (e.g., reviews in [6–8]), its amount
continuously increases, while the role of some of these
factors is not quite clear or revised and, therefore, new
data have to be periodically generalized.

The best-known restriction factors with established
mechanisms of action are IFITM1–3 in [9], APOBEC3
in [10–12], TRIM5α in [13–15], Mx2 in [16–18],
Schlaffen11 in [19], SAMHD1 in [20–22], and BST-2
(also known as Tetherin) in [23, 24].

Below we will thoroughly consider the cellular pro-
teins involved in HIV restriction, in the order they
influence different stages of the HIV replication cycle:
from early to late.

IFITM
The penetration of HIV-1 into a cell causes activa-

tion of pattern-recognizing receptors (PRR), includ-
ing Toll-like receptor 7 (TLR7), and the production of
the type I interferons (IFN) in [25]. Numerous genes
of restriction factors of different viruses have been
found in recent years, their expression being depen-
dent on type I IFN production. Some of them (MxB,
BST-2, APOBEC3) were thoroughly studied in the
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Fig. 1. The counteraction of accessory viral proteins to cellular restriction factors.
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context of specific viral infections, in particular, retro-
viral infection. Among such IFN-stimulated genes
(ISGs), the interferon-induced transmembrane gene
family (IFITM) with broad-spectrum antiviral activity
was identified.

The IFITM protein family was described 30 years
ago, with the simultaneously revealed induction of
their expression via type I and II IFN in [26]. The
antiviral function of IFITM1, IFITM2 and IFITM3
proteins was found in 2009, as a result of screening
small interfering RNA (siRNA) in [9]. These proteins
performed the function of restriction factors at the
early stages of cell infection with influenza A virus,
subtype H1N1, as well as f laviviruses: the Dengue and
West Nile fever viruses in [9]. The antiviral effect of
IFITM proteins against HIV-1 was shown in 2011: the
IFITM1, IFITM2, and IFITM3 knockdown resulted
in enhanced infection in [27].

IFITM1 is localized on the cell plasma membrane,
while IFITM2 and IFITM3 are localized in late endo-
somes and lysosomes in [28, 29]. The proteins contain
two transmembrane domains and an extremely con-
servative intracellular domain, which interestingly
mirrors the structure of another restriction factor,
BST-2, acting at the stage of particle release from
infected cells in [24] (see below). The principle of
restriction of virus penetration into a cell by IFITM
proteins is associated with two aspects: the regulation
of cell membrane cholesterol content and the inhibi-
tion of virus–cell fusion in [30–32]. In addition,
IFITM proteins can be incorporated into viral parti-
cles, which leads to a decrease in their infectivity in
[33]. Cell membrane fusion is impaired in this virions.
In human SupT1 T cells with a Tet-On-regulated
expression of different IFITM, all three proteins
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inhibit the infection with cell-free HIV-1 in [27].
However, IFITM3 demonstrates low efficiency in
HIV-1 restriction during cell-to-cell transmission in [33].

The study of IFITM-mediated HIV-1 restriction
depending on viral tropism (the virus uses CCR5 or
CXCR4 as coreceptors to penetrate into a cell) has
shown that the X4-tropic virus effectively undergoes
restriction via the IFITM2 and IFITM3 proteins in
endosomes and lysosomes, whereas the R5-tropic
virus undergoes restriction via IFITM1 expressed on
the cell plasma membrane in [34]. This selectivity is
determined when the HIV-1 virion penetrates into a
cell by fusing with the endosomal membrane, while
CXCR4 is used as a coreceptor, and with the plasma
membrane for CCR5-tropic viruses in [34].

The IFITM-mediated restriction goes on until
integration of the provirus into the cell genome and,
therefore, HIV-1 with IFITM restriction can be con-
trolled in one of the following ways: modification of
the site for particle penetration into a cell or the pres-
ence of proteins counteracting the restriction factor in
virions. The accumulation of mutations in the Env
protein in due course allows the virus to avoid restric-
tion in [35].

Thus, IFITM proteins are integral to the process of
viral and cell membrane fusion at the stage of virion
incorporation into a host cell, as well as during cell-to-
cell transmission. This process involves the envelope
protein of HIV-1; however, its exact mechanism is still
unclear.

TRIM
The proteins of the TRIM family, E3-ligases, par-

ticipate in cell cycle regulation, autophagy, and innate
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immune responses. TRIM proteins are involved in the
NF-κB and type I IFN signaling pathways and indi-
rectly influence HIV infection. However, several pro-
teins of this family directly inhibit viral infection at dif-
ferent stages of virus replication, inter alia, providing
proteasomal degradation of viral proteins in [36–41].

The TRIM family was characterized, for the first
time as early as in 2001, as a group of proteins with a
conservative three-component (TRIpartite Motif)
N-terminal domain RBCC (Really Interesting New
Gene (RING) E3 ligase domain, B boxes and Сoiled-
Сoil domains) in [42]. The RBCC domain provides
the E3-ligase function of the protein, as well as oligo-
merization, which is necessary for its functional activ-
ity in [43, 44].

The C-terminal domain, on the contrary, is vari-
able and responsible for the interaction between
TRIM and partner proteins. TRIM proteins are
divided into 11 subfamilies by type of C-terminal
domain. The PRY/SPRY (SPla and the RYanodine
Receptor) motif occurs at the C-terminus of more
than 30 TRIM proteins and is associated with the anti-
viral activity of TRIM5, TRIM22, TRIM11, and
TRIM15 proteins of the respective subfamilies in [40,
45, 46].

The TRIM5α protein of the TRIM family is con-
sidered the key molecule providing resistance of Old
World monkeys (African green monkeys, rhesus
macaque, etc.) to the HIV-1 infection in [13]; in New
World monkeys (e.g., night monkeys), this function is
performed via TRIM5 fused with cyclophilin A
(TRIMCyp) in [14, 47].

Several models describing the mechanism of HIV-
1 restriction via the TRIM5α protein have been pro-
posed; each is based on interaction between the SPRY
domain and the viral capsid, which leads to the
impairment of virus disassembly (early “uncoating”).
However, the exact mechanism of TRIM5α interfer-
ence in unpacking of the virion has not yet been eluci-
dated. For binding with the capsid, TRIM5α forms
antiparallel dimers and trimers due to coiled-coil
domains. TRIM5α forms a hexagonal lattice sur-
rounding the capsid in [48–51]. Interestingly, the for-
mation of hexagonal latice is also true for TRIM-Cyp,
suggesting the existence of a common mechanism of
HIV restriction via different TRIM proteins in [52].

One more consequence of the formation of hexag-
onal structures via TRIM5α molecule on the viral
capsid is the triggering of the antiviral response of the
cell in [53] (Fig. 2). Dimerization of the RING
domains of TRIM5α on the capsid surface results in
enhanced E3-ligase activity of TRIM5α and activated
synthesis of polyubiquitin chains linked to the side
chain of Lys63. These ubiquitin chains activate the
TAK1 kinase complex through autophosphorylation
which, in turn, leads to the translocation of transcrip-
tion factors AP-1 and NF-κB to the nucleus, followed
by the expression of type-I IFN in [51].
One more successful antiviral strategy is imple-
mented via TRIM proteins from addressing viral compo-
nents to proteasomal degradation. However, it is still an
open question whether TRIM5α performs this function
with respect to HIV-1 capsid. At the moment, no ubiq-
uitination sites have been found at the HIV-1 capsid pro-
tein in [54], but the ability of TRIM5α to promote
self-ubiquitination is known, followed by degradation
in the proteasome where it probably carries viral com-
ponents in [55] (Fig. 2). In addition, virus nucleocapsid
components, including integrase, undergo effective pro-
teasomal degradation (not without the involvement of
TRIM5α) in [56].

Interestingly, the human homologue of TRIM5α
has no marked antiviral activity. However, the only
amino acid substitution in PRY-SPRY domains of the
human TRIM5α is able to appreciably rehabilitate it
as a HIV-1 restriction factor in [57]. Another protein
of the family, TRIM22, being a human paralog of
TRIM5α, participates in the inhibition of HIV-1 rep-
lication via type I IFN in [58, 59]. In addition,
TRIM22, irrespective of the inherent ligase function,
inhibits the Tat- and NF-κB-independent transcription
of viral genes from the LTR-promoter of HIV-1 through
direct interaction with the Sp1 factor in [60, 61]. These
observations are especially noteworthy for clinicians:
the possibility of controlling viral genome transcrip-
tion in the latent period is under discussion in [62].

It is yet unclear how exactly HIV-1 encounters
TRIM-mediated restriction. The level of TRIM11
expression in the cell is regulated via accessory viral
protein Vpr at low intracellular concentrations in [63];
however, this regulatory mechanism is still far from
being understood.

SAMHD1
The role of SAMHD1 (sterile alpha motif and his-

tidine-aspartate domain containing protein 1) in HIV
restriction was independently determined via two
research teams in 2011. The protein was identified
using mass spectrometry as a partner of accessory pro-
tein Vpx of the HIV-2 virus (in HIV-1, there is no Vpx)
in [20, 64]. SAMHD1 is expressed at a high level in
myeloid cells and resident CD4+ T cells and is a
deoxynucleoside triphosphatase responsible for the
regulation of dNTP pool and inhibition of HIV reverse
transcription in [20, 22, 64, 65].

The histidine/aspartate (HD) catalytic domain of
SAMHD1 protein hydrolyzes dNTP with the forma-
tion of deoxyribonucleoside and triphosphate, thereby
removing structural blocks for the synthesis of viral
cDNA in [22]. The enzyme activity is determined
through tetramerization and allosterically controlled
by the GTP and all four dNTPs in [66–70].

SAMHD1 also has a metal-dependent 3′→5′ exo-
nuclease activity against single-stranded DNA and
RNA, suggesting the existence of one more HIV
MOLECULAR BIOLOGY  Vol. 53  No. 2  2019
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Fig. 2. The role of TRIM proteins in HIV replication. Ub, ubiquitin; K48-, K63-polyUb, ubiquitin chains linked via Lys48 and
Lys63, respectively; P, phosphorylation.
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restriction mechanism peculiar to this enzyme: viral
RNA binding and degradation in [71]. dNTP triphos-
phate hydrolase and 3′→5′ exonuclease activities of
SAMHD1 are performed via the HD domain. In the
SAMHD1 point mutants with D137N or Q548A sub-
stitutions, Ryoo et al. in [72] have demonstrated the
ability of SAMHD1 to inhibit HIV-1 infection with-
out dNTP triphosphate hydrolase activity and by
maintaining 3′→5′ exonuclease activity. However, the
inhibitory effect of SAMHD1 was not observed in the
reverse situation. Thereby, the authors concluded that
it is the 3′→5′ exonuclease activity of SAMHD1 that
majorly contributes to HIV-1 restriction in [72]. Although
these results were not confirmed later in [73, 74], Ryoo
et al. explained this with the differences in experimental
setup in [75]. The significance of the 3′→5′ exonuclease
activity of SAMHD1 for HIV restriction is an open
question to date.

The accessory HIV-2 protein Vpx binds to the
SAMHD1 C-terminus and adapter molecule DCAF1
and initiates the formation of E3-ubiquitin ligase
complex, followed by proteasomal degradation of
SAMHD1 in [20, 64, 76, 77]. The mechanism of this
HIV-1 resistance to SAMHD1 restriction has not yet
MOLECULAR BIOLOGY  Vol. 53  No. 2  2019
been completely studied. Vpr has carried the same
motif as Vpx, which is necessary for binding with the
DCAF1 adapter and arresting the cell cycle in the G2
phase in [77]. In addition, Kyei et al. in [78] have
recently shown that HIV-1 can use cell cycle regulator
cyclin L2 to neutralize SAMHD1 in macrophages.
The importance of SAMHD1 in HIV-1 restriction has
been shown via macrophages isolated from patients
with the Aicardi–Goutieres syndrome caused by
mutations in SAMHD1. The macrophages of such
patients are characterized by much higher sensitivity to
HIV-1 infection compared to the macrophages of
healthy people in [21].

APOBEC3 (CEM15)

APOBEC3 (apolipoprotein B editing complex 3) is
a family of cytidine deaminases comprising seven pro-
teins in primates: APOBEC3A (A3A), A3C, A3H with
one catalytic domain and A3B, A3D, A3F, A3G with
two domains in [79, 80]. APOBEC3 proteins, espe-
cially A3G, are characterized by the high level of
expression in many types of cells including CD4+ Т
cells, dendritic cells, and macrophages in [81]. In
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addition, the expression of APOBEC3 is stimulated
via type I IFN in [81]. A3G was originally given prece-
dence over other proteins of the family, but later it
became clear that A3H, A3F, A3D and A3B were also
active against HIV, while the viral protein Vif counter-
acted each in [82].

The antiviral role of APOBEC3 proteins is evident
once they have entered viral particles, i.e., only in the
next cycle of virus replication in [83, 84]. Restriction
occurs via deaminase-induced C→U transformation
in the (–)-strand of HIV DNA. Uracil is recognized
by polymerase as thymine, which leads to the G→A
mutation in the synthesis of DNA (+)-strand in [83].
Hypermutation during the reverse transcription of
viral RNA into DNA has two important conse-
quences: first, aberrant sequences are recognized via
the cells and eliminated; second, the mutated DNA of
the provirus is integrated in the cell genome, however,
due to the great number of premature stop codons
(formed, e.g., after TGG→TAG substitution) and
other mutations, infectious viral particles are not pro-
duced in [10, 83]. APOBEC3-dependent mutagenesis
occurs at a higher frequency at the 3'-end of viral
sequence. In contrast to viral DNA (–)-strand synthe-
sized from a single site (primary binding site) in the
5'-LTR region, the synthesis of DNA (+)-strand is
initiated from two polypurine tracts: the central
(cPPT) and that at the 3'-end (3'-PPT). The presence of
two sites for initiation of the synthesis of DNA (+)-strand
and simultaneous RNA cleavage creates the prerequi-
sites for the nonequilibrium and longer single-
stranded state of DNA (–)-strand (which is a substrate
for APOBEC3) in the 3'-region of the HIV genome in
[85, 86].

The proteins of the APOBEC3 family inhibit lenti-
viral infection via the alternative mechanism not asso-
ciated with deaminase activity. A3-deaminases impair
reverse transcription by preventing (–)-strand synthe-
sis and tRNA binding with the viral mRNA in [10, 87].
However, this hypothesis was not confirmed in some
works in [88, 89] as they showed that APOBEC3 proteins
were incapable of HIV restriction without deaminase
catalytic domain.

HIV uses accessory protein Vif, which induces degra-
dation of deaminases prior to their incorporation into
viral particles, as a tool for counteracting APOBEC3-
mediated restriction. Vif binds to APOBEC3 molecule
in the infected cell, followed by the involvement of the
E3-ubiquitin ligase complex comprising elongin B,
elongin C, and RBX1, with the subsequent degrada-
tion of APOBEC3 in [84, 90, 91]. However, Vif cannot
completely eliminate APOBEC3 in virus-producing
cells, as has been demonstrated by the presence of
numerous mutations in proviruses of the cells of patients
with acute and chronic HIV infection, as well as during
the vertical transmission of HIV to newborn infants in
[82, 92]. Probably, the induction by type I IFN shifts the
APOBEC3–Vif balance towards restriction factors, so
they have time to enter viral particles before binding
with Vif.

The virus seems to gain additional benefits in par-
tial containment of APOBEC3-mediated restriction.
It may happen that A3 deaminases do not completely
suppress virus replication but provide a high level of
mutagenesis and, therefore, a higher risk of appear-
ance of escape-mutants resistant to antiretroviral
drugs. The low efficiency of antiretroviral therapy in
some patients is already associated with defective Vif
in [93]. Thus, APOBEC3 can be considered an exam-
ple of a restriction factor the virus turns to its own
advantage.

MxB
MxA and MxB (Mx1 and Mx2 in mice) are pro-

teins of the GTPase family; the expression of both pro-
teins is induced by type-I IFN. MxA is known to have
a broad-spectrum antiviral activity against DNA- and
RNA-containing viruses but not retroviruses in [94,
95]. Recently, three independent research teams have
shown that MxB is involved in HIV-1 restriction:
without affecting the reverse transcription of viral
RNA, it destabilizes the preintegration complex and
thereby reduces the integration of proviral DNA into
the cell genome in [16–18, 96].

In contrast to MxA, MxB has an extended N-ter-
minal domain necessary for HIV-1 restriction in addi-
tion to the GTPase domain in [16, 96, 97]. This
domain carries a nuclear localization signal (NLS)
and can bind to the viral capsid after homodimeriza-
tion (2 MxB molecules bind to each other in antipar-
allel directions). The Arg-rich motif of this domain
directly binds to the HIV-1 capsid and determines the
ability of MxB to restrict the virus in [98]. It suppos-
edly leads to the inhibition of virus “uncoating” simi-
lar to TRIM5α restriction in [99].

Thus, MxB influences HIV-1 replication in two
cellular compartments and, accordingly, at the subse-
quent stages of virus replication cycle: “uncoating” in
the cytoplasm, import of the pre-integration complex
to the nucleus, and integration of the provirus into the
cell genome. Clinical HIV-1 isolates carrying H87Q
and G116A mutations in the capsid protein have lower
sensitivity to MxB-mediated restriction and enhanced
replicative activity compared to other circulating
strains in [100, 101]. These data can be considered evi-
dence in favor of the hypothesis of the inhibitory pres-
sure of the MxB factor on HIV-1.

SCHLAFEN11 (SLFN11)
SLFN11 is a member of the Schlafen family of

ISG-proteins regulating cell proliferation, immune
response and viral replication in [102]. The involve-
ment of SLFN11 in HIV restriction was shown in [19].
SLFN11 proved to have no effect on early stages of the
cycle of retroviral infection, including reverse tran-
MOLECULAR BIOLOGY  Vol. 53  No. 2  2019
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scription, integration, and transcription. SLFN11 acts
at the late stage of virus replication, selectively inhibit-
ing the translation of viral proteins. SLFN11 binds
tRNA and counteracts the changes in the cellular pool
of tRNA caused by the presence of HIV. This is a new
antiviral mechanism of innate immune response,
where SLFN11 selectively inhibits the synthesis of
viral proteins in HIV-infected cells.

The reduced translation of viral proteins under
type-I IFN stimulation was observed 18 years before
this discovery, as early as in 1994, but the regulation
mechanism was not studied in [103]. SLFN11, under
the conditions of type-I IFN stimulation, inhibits the
translation of not only viral but also other codon-
unoptimized transcripts in a cell in [104]; hence, this
protein apparently should not be considered as a spe-
cific HIV restriction factor. Most likely, SLFN11 is
involved in the total antiviral response of cells.

MARCH8 (c-MIR)
The involvement of MARCH8 (membrane-associ-

ated RING-CH8) protein in HIV-1 restriction has
been shown lately in [105]. MARCH8 is an E3-ubiq-
uitin ligase with a high level of expression in differen-
tiated myeloid cells: macrophages and dendritic cells.
At the moment of revealing the antiviral function of
the protein, MARCH8 was known to reduce the
expression of some cellular transmembrane proteins,
in particular, MHC class II and TRAIL-R1 (TNF-
related apoptosis-inducing ligand receptor 1) in [106,
107]. MARCH8 is supposed to recognize the three-
dimensional structure of transmembrane domains of
proteins but not specific motives; however, there is no
reliable experimental evidence in favor of this fact.

Tada et al. have shown in [105] that the ectopic
expression of MARCH8 in virus-producing cells does
not influence the level of virus production but reduces
the infectivity of viral particles. MARCH8 blocks the
entry of viral envelope protein into virions by reducing
the expression of Env at the cell surface, possibly by
interacting with it. As a result, there is a substantial
decrease in the efficiency of virus–cell fusion. At the
moment, the exact strategy of HIV counteracting the
MARCH8-mediated restriction HIV is unknown, how-
ever, it has been shown that accessory proteins Vpr, Vpu,
and Nef do not interfere with MARCH8 in [105].

SERINC3 AND SERINC5
There was no understanding of how viral protein

Nef increases the infectivity of viral particles in [106,
107]. Usami et al. in [108] supposed that Nef counter-
acted a certain restriction factor by decreasing its den-
sity at the cell surface and preventing incorporation
into virions. The proteomic analysis of Nef+ HIV-1
and Nef- HIV-1 virions showed that they possessed
membrane proteins SERINC3 and SERINC5 (SERin
INCorporator). The incorporation of SERINC3 and
MOLECULAR BIOLOGY  Vol. 53  No. 2  2019
SERINC5 into HIV virions actually decreased their
ability to infect host cells in [108].

The SERINC family consists of five proteins char-
acterized by the presence of 10–11 transmembrane
domains. SERINC proteins are involved in the bio-
synthesis of sphingolipids and phosphatidylserine in
[109]. However, only SERINC3 and SERINC5 are
considered to be HIV-1 restriction factors, and SER-
INC5 has a more marked antiviral effect in [110, 111].
The supposed mechanism of action of SERINC5 con-
sists in the formation of oligomers on the membranes
of viral particles, which leads to the lower efficiency of
viral–cell membrane fusion in [112]. In addition, the
penetration of SERINC5 into viral particles results in
their enhanced sensitivity to the broadly neutralizing
antibodies recognizing conservative domain gp41 of
the envelope protein in [112, 113].

The HIV-1 accessory protein Nef effectively
removes SERINC3 and SERINC5 from the cell sur-
face, preventing their penetration into virions in [108,
111, 114]. The mechanism of negative regulation of
SERINC3 and SERINC5 is analogous to reduction of
CD4 expression at the cell surface: in each case, Nef
uses the cellular transport system to provide endolyso-
somal degradation of target cell proteins. The sensitiv-
ity of SERINC5 to Nef-mediated degradation is
determined via the structure of its intracellular domain
ICL4 (intracellular loop 4). With the substitution of a
resistant variant of ICL4 for the Nef-sensitive variant,
SERINC5 becomes resistant to Nef, which no longer
prevents SERINC5-induced HIV restriction in [115].

BST-2 (CD317, TETHERIN)

One of the causes of why HIV-1 group M has
become widespread in humans and became pandemic
was the high resistance to cellular factor BST-2
acquired as a result of evolution and adaptation of viral
protein Vpu to BST-2-induced restriction in [116].
Other HIV-1 groups, as well as HIV-2 and SIV, have
not evolved in this direction and are supposed to pro-
tect themselves from the effect of BST-2 via a more
ancient and less effective method: using accessory
protein Nef in [117–120]. Accessory viral protein Vpu
is encoded in the HIV-1 genome without being in
HIV-2 and in most SIV strains. vpu-defective virus
Δvpu-HIV-1 has definite characteristics that differen-
tiate it from the wild-type virus: the smaller number of
“spikes” at the virion surface and the agglomeration of
viral particle “clusters” near the cell surface in [121–
123]. The decreased number of spikes at the viral enve-
lope is due to the interaction between CD4 molecule
and viral envelope protein gp160 in the Golgi appara-
tus. Vpu binds to CD4, thereby releasing the envelope
protein that can be easily transported to the cell
plasma membrane in [124].

It was more difficult to understand the cause of the
Δvpu-HIV-1 viral particle clustering near the cell sur-
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Fig. 3. The topology of BST-2, the interaction with Vpu, and the activation of the NF-κB pathway.
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face. The site-directed mutagenesis in the vpu gene has
shown that the release of gp160 and the clustering of
virions near the cell surface involve different Vpu
domains. Thus, the assembly of Δvpu-HIV-1 virions
was observed only in particular types of cells and could
be intensified with type-I IFN in [125, 126]. The Vpu-
defective virus also proved more sensitive to the sup-
pression of replication under the influence of IFN-α.
In addition, these viral particles were mature and
could be removed from the surface of infected cells via
protease treatment. Consequently, there is a cellular
protein capable of retaining Δvpu-HIV-1 virions on
the cell surface, thereby preventing budding. Accord-
ing to data from electron microscopy, Δvpu-HIV-1
viral particles not only attach to the surface of infected
cells but also “adhere” to each other in [23]. This
means that the molecule involved in this process can
be incorporated into a viral envelope and prevent virus
distribution by retaining viral particles on the surface
of infected cells. All the above gives grounds to believe
that the Vpu protein originated and was established
during the coevolution of HIV-1 with humans as a tool
for counteracting IFN-mediated cell defense.

Neil et al. in [23] proposed the name “tetherin”
(from “tether”: to tie, to restrict) for the cell surface
protein responsible for this process. The specific mol-
ecule performing this function was identified by the
microchip analysis of cell transcriptome before and
after the stimulation with IFN-α. The candidates were
BST-2 (bone marrow stromal antigen 2) and three
IFN-induced transmembrane proteins: IFITM1,
IFITM2, and IFITM3. The ability of BST-2 to
“tether” the virus to the membrane was confirmed
experimentally. BST-2 had no effect on the expression
and processing of viral protein Gag, inhibiting only the
release of formed viral particles from the cell.

BST-2 has a unique structure: the N-terminus with
the cytoplasmic domain merges into the transmem-
brane domain; next there is an external coiled-coil
domain and C-terminal glycosylphosphatidylinositol
(GPI) anchor often referred to as second transmem-
brane domain in [127, 128] (Fig. 3). BST-2 is localized
in lipid rafts of the plasma membrane, the trans-Golgi
network, and endosomes in [127, 129, 130]. Two
membrane-associated domains determine the ability
of the protein to retain viral particles close to the mem-
brane and bind them with each other: when the virions
bud, one of the domains remains on the membrane,
while the other is incorporated into the lipid envelope
of the virus in [131–134] (Fig. 4). BST-2 functions as
homodimers and homotetramers covalently bound via
cysteine residues localized in the coiled-coil external
domains of BST-2 in [129, 131, 135, 136] (Fig. 3).

The attachment of the virus to the membrane of
infected cell reduces infection by the cell-free virus.
HIV-1 is more effectively transmitted through inter-
cellular junctions, especially through virological syn-
apses attracting adhesion molecules, viral proteins,
and cell receptors in the area of contact in [137, 138].
The question on the function of BST-2 in HIV cell-to-
cell transmission is interesting and still open. There
are contradictory data. The inhibitory effect of BST-2
on the cell-to-cell transmission of infection has been
shown in [139–142]; contrariwise, BST-2 does not
function as a restriction factor of HIV during its cell-
to-cell transmission but even facilitates more effective
infection of neighboring cells due to retaining viral
particles in the infected/uninfected cell contact area in
MOLECULAR BIOLOGY  Vol. 53  No. 2  2019
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Fig. 4. The scheme of BST-2-mediated retention of HIV-1 virions near the surface of infected cells.
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[143–145]. The development of methods for the
quantitative measurement of cell-to-cell infection,
making it possible to separate producer cells from
infected cells in a single culture, can resolve this con-
tradiction and elucidate the role of BST-2 in HIV-1
cell-to-cell transmission in [146, 147].

The cytoplasmic tail of BST-2 determines the pro-
tein involvement in intracellular signal transduction.
BST-2 has been found among the proteins activating
the NF-κB signaling pathway in [148]. Retention of
the virus near the surface and activation of the NF-κB
signaling pathway are two independent functions of
the protein performed via different domains; at the
same time, virion binding and BST-2 dimerization
induce NF-κB-signaling in [149, 150]. TRAF2 and
TRAF6 are attracted to the supposed TRAF-binding
site at the BST-2 molecule, which leads to the activa-
tion of TAK1 and, accordingly, the triggering of the
canonical NF-κB-signaling pathway, followed by the
expression of proinflammatory cytokines IL-6,
CXCL10, and IFN-β.

Accessory protein Vpu of the HIV-1 virus binds to
the transmembrane domain of BST-2 in [151] and
attracts SCF E3-ubiquitin ligase, which leads to ubiq-
uitination and endolysosomal degradation of BST-2 in
[151, 152]. SIV Nef protein effectively counteracts
BST-2 in monkeys in [116, 117], while HIV Nef is not
considered a factor interfering with BST-2 in humans.

METHODS FOR REVEALING NEW HIV 
RESTRICTION FACTORS

Most of the currently known (IFITM, BST-2,
APOBEC3) HIV restriction factors have been found
among ISGs. The triggering of IFN and NF-κB sig-
naling pathways in the infected cell due to viral sensors
(TLR, RLR, etc.) leads to the expression of proteins of
cell protection against viral infection. It is not surpris-
ing that HIV restriction factors have been found
among them.
MOLECULAR BIOLOGY  Vol. 53  No. 2  2019
One more efficient strategy for studying restriction
factors consists in the search of partner proteins for
accessory proteins of the virus. HIV is able to infect
cells without expression of Vif, Vpr, Vpu, and Nef (Vpx
in HIV-2); however, their presence in the viral genome
is functionally justified. It is believed that the main func-
tion of accessory proteins is to counteract cell defense.
The identification of SAMHD1 and SERINC3/5
restriction factors as the targets of Vpx and Nef,
respectively, confirms this hypothesis.

The development of high-throughput sequencing
techniques has opened up new prospects for searching
restriction factors. Even now there is a large body of
data accumulated as a result of siRNA-, shRNA-, and
CRISPR/Cas9-screening for the search of restriction
factors in [153] and HIV-1 replication factors in [154–
158]. These data arrays still “wait in the wings”: they
require systematization in [159] and interpretation in
accordance with the results of experimental studies;
but even now they stimulate and accelerate the search
of new, clinically interesting cellular proteins involved
in HIV infection.
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