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INTRODUCTION

A nuclear compartment can be defined as a site
where a certain set of macromolecules concentrates in
the cell nucleus. Nuclear compartments are often
equated with the so�called nuclear bodies, which are
function�dependent aggregations of macromolecules
involved in a particular process occurring in the cell
nucleus [1–4]. The nucleolus is the most recognizable
compartment of the kind (Fig. 1a). Other compart�
ments include, but are not limited to, a perinucleolar
compartment, Cajal bodies, PML (ND10) bodes, his�
tone locus bodies, speckles, and transcription and rep�
lication factories (Fig. 1). The majority of the com�
partments were initially identified by light or electron
microscopy. For instance, splicing bodies, which are
detectable by staining small nuclear RNAs (snRNAs)
and spliceosome assembly proteins (e.g., SC35), were
first described as granules seen in the interchromatin
space under an electron microscope. Cajal bodies were
similarly observed in vertebrate neurons by light
microscopy. As immunostaining developed and
nuclear body proteins were identified, it became pos�

sible to rapidly visualize the nuclear bodies and to
examine them subsequently by confocal microscopy.

Nuclear bodies were for a long time studied without
regard to the spatial organization of interphase chro�
mosomes. Yet genomic DNA was always known to
play a role in biogenesis of many nuclear compart�
ments. For instance, nucleoli form around transcribed
rRNA genes. Many nuclear compartments arise
around certain genomic loci, as is the case with his�
tone locus bodies or transcription and replication fac�
tories. Even if not involved directly in assembly of
nuclear compartments (e.g., in the case of speckles,
paraspeckles, PML bodies, and some other compart�
ments), genomic DNA still plays a substantial role in
their positioning because the nuclear space is occupied
by chromatin, while the above compartments occur in
chromatin�free regions. Thus, the genome packaged
in the nuclear space can be thought to provide a basis
for nuclear compartmentalization, which, in turn, is
directly related to genome activity [5–8]. In addition,
it should be mentioned that certain chromatin struc�
tures are often classified with nuclear compartments,
as is the case with pericentric heterochromatin clusters
(chromocenters), perilamellar (peripheral) and peri�
nucleolar layers (Fig. 1b) [9], Polycomb bodies, and
some other compartments. Finally, the space occupied
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by chromatin and the so�called interchromatin
domain (Fig. 1c) [10, 11] are also distinct spatial com�
partments, although failing to match the above defini�
tion.

The interrelationships of gene activity, the spatial
organization of chromosomes, and the functional
compartmentalization of the cell nucleus are consid�
ered in detail in this review.

SPATIAL ORGANIZATION
OF THE GENOME

General Principles of Chromosome Folding
and Chromatin Domains

In the eukaryotic cell, an extremely long DNA
thread (approximately 2 m of DNA per human hap�
loid chromosome set) is packaged in a relatively small
volume of the cell nucleus, which is usually about
10 µm in diameter. In spite of its multifold compac�
tion, DNA is accessible for transcription and replica�
tion. The mechanisms of DNA packaging in chroma�
tin have been a subject of intense research for the past
40 years. Several hierarchic levels are recognized in
DNA compaction, and the first one consists in DNA
wrapping around a histone octamer to produce a
nucleosome [12]. A nucleosome chain folds further to

produce presumably the so�called 30�nm fiber, which
forms additional loops or other supercoiled structures.
The nucleosome particle is the only characterized in
detail among these structures [13]. The structure of the
30�nm fiber is still unclear [14], and even its existence
in the living cell is questioned [15–19]. As for higher�
order chromatin packaging, the available experimen�
tal data are so discrepant that it is infeasible to con�
struct an integral picture for the spatial organization of
the genome [19–21].

A principal difficulty was that there were no exper�
imental techniques to study the DNA folding in intact
nuclei. Substantial progress in understanding the spa�
tial organization of the genome was made with the
development of chromosome conformation capture
(3C) technology [22], which is based on in situ ligation
of closely spaced DNA fragments [23], and 3C�based
genome�wide methods, such as high�throughput 3C
(HiC) [24, 25]. Apart from reporting numerous exam�
ples of spatial interactions between distant regulatory
elements, such as promoters, enhancers, and insula�
tors [26–30], HiC made it possible to advance a glob�
ular model for genome organization [17]. The model
suggests that the genome is divided into topologically
isolated globular domains, which are termed the topo�
logically associated domains (TADs) or just topologi�

Fig. 1. Structure of the eukaryotic nucleus and main types of nuclear compartments (drawing). (a) Nucleolus, (b) perinucleolar
space, (c) interchromatin domain, (d) topologically�associated domain, (e) lamina, (f) nuclear envelope, (g) lamina�associated
domains, (h) nucleolus�associated domains, (i) chromosome territories, (j) Polycomb body, (k) insulator body, (l) PML body,
(m) Cajal body, (n) nuclear speckles, and (o) nuclear pore complex.
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cal domains (Fig. 1d). On average, the domains are
approximately 1 Mb in human and mouse cells [31]
and 100 kb in Drosophila cells [32]. The frequency of
contacts between genome regions located in one topo�
logical domain is higher than between regions of dif�
ferent domains. The partitioning of the genome into
domains is conserved among cells of different types
within species and even among related species, such as
human and mouse [31]. The conservation suggests an
ancient evolutionary origin for the genome elements
and mechanisms responsible for higher�order chro�
matin packaging. Topological domains are lost during
mitosis and restored again in the interphase [33], indi�
cating that special epigenetic mechanisms sustain the
reproduction of large�scale spatial genome organiza�
tion in both individual chromosomes and the cell
nucleus through generations. The positions of topo�
logical domains correlate well with the positions of
activating or repressive histone modification domains
and lamina�associated domains (LADs, see below).
However, the fact that topological domains are stable
in cells differing in gene expression pattern and his�
tone modifications (embryonic stem cells, brain cells,
and fibroblasts) indicates that the domain structure is
not governed by transcription or histone modification,
but rather depends on certain intrinsic properties,
which may be determined by the DNA nucleotide
sequence, e.g., binding sites for universal protein fac�
tors [34]. Some differences in HiC interactions are still
detectable between cells of different types, being usu�
ally related to genes subject to differential regulation.
It is of interest that such facultative interactions com�
monly occur within one topological domain.

To understand what demarcates the topological
domains, their positions were collated with the distri�
bution profiles of insulator proteins and other epige�
netic markers. In Drosophila, domain boundaries were
enriched in DNase�hypersensitive regions and bind�
ing sites for the CP190 and Chromator insulator pro�
teins, which are known to play a role in organizing the
chromosome structure [32]. In mammalian cells, the
boundaries of topological domains were enriched in
housekeeping gene promoters and CTCF�binding
sites. Yet only a minor portion of all CTCF sites was
associated with domain boundaries. The other
genomic elements observed at domain boundaries
included tRNA genes and short interspersed repeats
(SINEs), which may also be related to the insulator
function [35, 36]. Note, however, that the topological
domain structure could be determined not only by the
specific boundary elements, but rather by within�
domain interactions between particular regions. We
think that these interactions play a key role in estab�
lishing and maintaining the topological domain struc�
ture, while domain boundaries are determined pas�
sively and have no structural function. A spatial inter�
action between DNA replication origins or closely
spaced promoters of housekeeping genes can be con�

sidered as a possible determinant of the spatial organi�
zation of topological domains in this context.

Genome regions that interact with relatively stable
nuclear structures are another class of chromatin
domains. In particular, the nuclear lamina plays a role
in fixing the chromatin domains (Fig. 1e). The nuclear
lamina covers the nucleoplasmic surface of the inner
nuclear membrane (Fig. 1f) and consists of the pro�
teins lamins, which form extended polymeric struc�
tures [37, 38]. Maps of genome–nuclear lamina inter�
actions provide information on the general spatial
organization of interphase chromosomes. Approxi�
mately 1300 LADs having contacts with lamin B1 were
identified in mammalian cells by DamID technology
[39]. The LADs account for approximately 40% of the
genome and are rather large, varying in size from
100 kb to 10 Mb (0.5 Mb on average) (Fig. 1g). Con�
tacts with the nuclear lamina are tissue specific in part
[40]. A domain character of interactions with the
nuclear lamina was similarly observed in flies and
worms [41–43]. The majority of genes located in
LADs are transcriptionally inactive, indicating that
the nuclear lamina is a repressive nuclear region [39–
43]. In fact, a locus artificially attached to the nuclear
lamina or internal nuclear membrane shows decreased
transcriptional activity [44, 45], although exceptions
are known [46].

The mechanisms that target extended DNA
regions to and hold them on the nuclear lamina are
still poorly understood. A certain role is possibly
played by nuclear lamina�associated DNA�binding
proteins that recognize specific nucleotide sequences.
A recent study in human cells showed that (GA)n
repeats are capable of targeting certain LADs to the
nuclear lamina [47]. However, a systematic genome�
wide analysis did not detect any enrichment in (GA)n
repeats for LADs [39], indicating that the repeat�based
attachment mechanism is not universal. Constitutive
LADs (i.e., LADs that are invariant in cells of different
lineages) overlap to a great extent with A/T�rich isoch�
ores in mammals [48]; i.e., A/T�rich DNA regions
may play a role in anchoring genome segments on the
nuclear lamina. Studies with a Caenorhabditis elegans
model showed that histone methyltransferases MET�2
and SET�25, which methylate histone H3 at Lys9, act
cooperatively to ensure a peripheral localization and
silencing of transgenic repeats [49]. Contacts with the
nuclear lamina were partly lost on a genome�wide
scale in cells knocked out in both MET�2 and SET�25
genes. Thus, the interaction of genome regions with
the nuclear lamina can be guided by both specific
DNA sequences and chromatin modifications.

The nucleolus also provides a platform for spatial
genome organization. The DNA fraction purifying
with nucleoli upon their isolation was examined by
two research teams [50, 51]. Apart from the expected
rRNA gene loci, regions of almost all chromosomes
were observed in the fraction. The regions, which were
termed the nucleolus�associated domains (NADs,
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Fig. 1h), contain predominantly repressed genes and
are enriched in repressive chromatin modifications, in
particular, trimethylation of histone H3 at Lys9. A
substantial overlap was unexpectedly observed
between LADs and NADs [50, 51], although data on
cells of different types were used so far for the compar�
isons. It is possible that LADs and NADs consist, at
least in part, of the same type of repressed chromatin,
which is distributed more or less randomly between
the lamina and nucleolus. The model is supported by
the microscopic observation that some chromosome
regions associated with the nucleolus in a maternal cell
can move to the periphery of the nucleus in the daugh�
ter cells after mitosis [51, 52].

Genome�wide methods allow comprehensive
investigation of the genome compartmentalization,
from studying the linear distribution of proteins along
chromosomes to constructing three�dimensional
models of particular genome domains and whole
genomes. However, it should be noted that the avail�
able mapping techniques operate with thousands or
millions of cells and yield a picture averaged over the
cell population. Yet specific long�distance interactions
occur only in a minor portion of cells at a given time
according to the majority of microscopic studies and,
indirectly, HiC data [17, 53, 54]. The averaging over
many cells blurs the resulting picture of chromatin
domains. For instance, does a protein cover a particu�
lar chromatin domain in every cell of a population or
in only some of the cells? Does a protein cover the
domain entirely or partly in an individual cell? Fraser
and colleagues [55] recently developed a modified
HiC protocol to probe the spatial interactions in indi�
vidual cells. Studies using the protocol showed that the
domain organization on a megabase scale is similar
between individual chromosomes, while higher�order
chromosome structures vary among cells.

Chromosome Territories

Although compact mitotic chromosomes were
described as early as 1882, it was unclear until the late
20th century what are they in the interphase. Cremer
and colleagues [56, 57] were the first to assume that
interphase chromosomes are not fully decondensed in
the nuclear space because UV laser irradiation of a
limited area of the nucleus was observed to damage
only a few chromosomes (damage was detected in the
subsequent mitosis). The majority of chromosomes
remained intact, indicating that each chromosome
occupies a limited part of the nuclear space in the
interphase. The interpretation was fully confirmed by
the results of staining individual chromosomes with
chromosome�specific probes, which were obtained in
the same lab [58–60]. Interphase chromosomes were
found to occupy compact and, in the first approxima�
tion, nonoverlapping nuclear areas, which are sepa�
rated by regions depleted or even free of chromatin.
The regions were collectively termed the interchroma�

tin domain (Fig. 1c), while the term chromosome ter�
ritory was proposed for the area occupied by an indi�
vidual chromosome (Fig. 1i) [60]. The observations
were confirmed and augmented in further research
[61–64]. The relative arrangement of individual chro�
mosome territories within the nucleus became the
subject of intense studies. Yet they failed to yield a sim�
ple rule that would describe the positioning of chro�
mosome territories in the nuclear space, revealing only
that gene�rich chromosomes tend to occur in the cen�
ter of the nucleus, while chromosomes with a low gene
content tend to occur at the periphery [60,61]. It is
noteworthy that the position of a particular chromo�
some relative to the center of the nucleus substantially
varies among individual cells. The nuclear position of
a chromosome is usually characterized by the average
distance from the center of its chromosome territory to
the center of the nucleus. Yet it should be understood
that deviations from the average distance are substan�
tial [65].

Individual chromosome territories display a polar
distribution of gene�rich and gene�depleted segments,
the former occurring closer to the center of the
nucleus and the latter being closer to the periphery of
the nucleus within one territory [66, 67]. The inter�
chromatin domain was thought to provide for transfer�
ring the transcription products from the nucleus into
the cytoplasm and supplying “building blocks” for
transcription, replication, and other processes related
to the genome function. Active genes were expected to
occur close to the periphery of their chromosome ter�
ritory according to the model. However, the assump�
tion did not receive experimental support [66, 68–70]
apart from the observation that certain actively tran�
scribed genes are looped out of their chromosome ter�
ritory into the interchromatin domain [71–73]. At the
same time, a sponge�like structure was demonstrated
for chromosome territories with the interchromatin
domain penetrating into their interior (Fig. 1) [69, 74].
Such a structure was assumed to form because chro�
mosome territories are organized as a series of linked
globular domains of approximately 1 Mb in size,
which are embedded in the interchromatin domain
[10, 11, 74–76]. The globular domains probably cor�
respond to replication foci [75, 77, 78] and TADs
identified in HiC experiments (Fig. 1d; see General
Principles of Chromosome Folding and Chromatin
Domains). Transcription presumably takes place in
the perichromatin space at the boundaries of con�
densed chromatin domains [70, 79]. The available
data [70] are insufficient to decide whether transcribed
genes are scattered throughout the surface of con�
densed chromatin domains or clustered in certain
regions of the perichromatin space (e.g., the regions
between TADs).

The mechanisms that maintain the organization of
interphase chromosomes in chromosome territories
are poorly understood. It was believed initially that
electrostatic repulsion between negatively charged
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chromosome surfaces ensures the formation of the
interchromatin domain [60]. However, it is unclear
why the same repulsion does not disrupt a chromo�
some territory from the inside, given that the territory
consists of negatively charged subunits. A filamentous
nuclear skeleton (nuclear matrix) was assumed to
maintain the organization of chromosomes into chro�
mosome territories [80, 81]. Yet there is still no con�
vincing evidence that such a skeletal structure exists in
living cells [82]. Computer simulation showed that
many properties of chromosome territories can be
explained in terms of conventional polymer dynamics,
in particular, Brownian motion and segregation of
nonbound polymer chains as a result of topological
constraints [83]. The model of chromatin fiber folding
into a series of random chromatin loops explains not
only segregation of chromosome territories, but also
the experimental finding that the distance between two
FISH probes is independent of the genomic distance
between the probes when the latter exceeds 10 Mb
[84, 85]. Given that loop parameters (size and density)
may vary between gene�rich and gene�depleted
regions, it is easy to understand why chromosomes
(chromosome arms) with a high or low gene density
differ in shape [86].

A dynamic character is inherent in the territorial
organization of chromosomes. Chromosome territo�
ries, as well as individual domains within a territory,
move continuously on evidence of vital cell staining
[87–91]. In line with these observations, an analysis of
the spatial configuration of individual chromosomes
in single cells showed that the configuration substan�
tially varies among cells [55].

FUNCTIONAL NUCLEAR COMPARTMENTS

Nuclear compartments are certainly a hot topic in
studying the eukaryotic genome and its activities. The
structures and functional roles of nuclear compart�
ments have recently been reviewed in [4, 92–95]. We
did not intend to review them again. Our focuses are
the possible role nuclear compartments may play in
maintaining the chromosome folding and, vice versa,
the role the chromosome folding may play in position�
ing the nuclear compartments. From this viewpoint,
the nuclear compartments are reasonable to divide
into two categories, those that contain DNA and are
directly related to DNA metabolism and those that are
not functionally related to DNA metabolism, but form
in the vicinity of certain genomic loci (as is the case
with histone locus bodies) or recruit certain genomic
loci (as in the case with Cajal bodies and speckles).

Nuclear Compartments (Bodies) Associated 
with DNA Metabolism

Replication factories. It is surprising that little is
known about replication factories. Replication was
convincingly shown to occur in a countable number of

“spots” in the nucleus during all S�phase stages, and
the spots were termed the replication foci [75, 96–99].
The number of replication factories functioning
simultaneously reaches ~1500 in early S [100]. Pulse�
labeling experiments showed that replication forks
cluster in the centers of replication foci [101]. Then
pulse�labeled DNA gradually moves to the periphery
of replication foci, creating the impression that DNA
is dragged through immobilized (still) replication
complexes [101–103]. A correlation is detectable
between replication foci, globular domains visualized
in interphase chromosomes, and TADs [75, 77, 78,
104–106]. Replication foci were identified as stable
structural units of interphase chromosomes that are
maintained through consecutive cell divisions [107,
108]. Cook and colleagues [109] visualized the repli�
cation factories in nuclei by electron microscopy after
removing chromatin. It was observed that a factory
includes approximately 40 replication forks and is a
dense body of 100–300 nm in diameter [109–111]. The
replication factory size increased with the S�phase
progress [110, 111]. Although published more than
20 years ago, the observations were not reproduced in
independent studies, and it is still unclear whether the
factories (clusters of replication complexes) persist in
the absence of replication. Whichever the replication
factory structure, a replication focus is apparently a
chromosome domain consisting of several replicons.
The replicons are probably close together in the linear
DNA sequence. Hence, replication factories are
unlikely to contribute to the interphase chromosome
landscape by forming long�distance interactions
between genome regions that are far apart (more
than 1 Mb).

Transcription factories. Like replication, transcrip�
tion occurs in a limited number of nuclear sites, as is
evident from the focal arrangement of phosphorylated
(active) RNA polymerase II and labeled nucleotides
incorporated in newly synthesized RNA [112–115].
The sites are considerably fewer than transcribed
genes at any time, indicating that a factory accommo�
dates several genes at once and ensures their coordi�
nated transcription. The three types of eukaryotic
RNA polymerases are organized in separate transcrip�
tion factories [116–119]. Ribosomal genes are tran�
scribed in the nucleoli, where RNA polymerase I and
its cofactors cluster in small (200–500 nm) fibrillar
centers. During transcription, rDNA slides on the
fibrillar center surface, while newly synthesized tran�
scripts are released in the adjacent dense fibrillar com�
ponent [116]. Transcription factories containing RNA
polymerase II are of special interest in the context of
this review. On average, a factory is approximately
70–80 nm in size by immunoelectron microscopy
[118] and contains up to 30 molecules of elongating
RNA polymerase II and nascent transcripts [118,
120]. There are eight polymerase molecules in a fac�
tory according to other estimates [121]. Gene reloca�
tion to the existing transcription factories is thought to
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be an important step in transcriptional activation and
is possibly controlled by special regulatory systems
[114, 122–126]. The nature of the regulatory mecha�
nisms is still unclear. Tissue�specific genes are pre�
sumably transcribed in specialized factories, which
contain the necessary tissue�specific transcription fac�
tors [127–129]. Yet experimental findings do not per�
fectly agree with the specialized transcription factory
model. For instance, a preferential association of
erythroid�specific genes in factories containing the
ELKF transcription factor was observed in erythroid
cells [54], but only for no more than two erythroid�
specific genes. A preferential association of more than
two erythroid�specific genes in one transcription fac�
tory was not detected [54]. Given that a transcription
factory contains up to 30 elongating RNA polymerase II
molecules and the associated transcripts [118, 120], it
is possible to assume that transcribed housekeeping
genes mostly occupy the so�called specialized tran�
scription factories. Although a certain preference in
association with a given factory can be assumed for
different genes transcribed with the same set of tran�
scription factors [54, 130], the spatial proximity in the
nuclear space plays a more important role in deter�

mining the genes that are to occur in one transcription
factory [131]. It should be noted in this respect that an
association in transcription factories is considerably
stronger for genes belonging to one chromosome and
especially to one chromosome arm than for genes
belonging to different chromosomes regardless of their
tissue specificity [54, 122, 130]. The probability for
genes to occur in one transcription factory seems to
depend on their nuclear positions and certain proper�
ties of the chromatin fiber (for more detail, see [115]).
The situation where a higher colocalization frequency
is observed for genes from different chromosomes is
rather an exception, depending most likely on the spe�
cific spatial architecture of chromosome territories in
cells of the given type [123]. There are data that tran�
scription factories exist in the absence of transcription
[121], but they are far from convincing. In fact, the
conditions used to suppress transcription in [121] fail to
ensure dissociation of elongating RNA polymerase II
complexes. Preinitiation or elongating RNA poly�
merase II complexes already assembled could be held
together as a result of molecular crowding (Fig. 2, see
The Relationship between Nuclear Compartmental�
ization and Chromosome Folding below) [132, 133].
Their contact persists until large protein complexes
are decomposed [115].

Polycomb bodies are repressive nuclear compart�
ments known also as repressive hubs; they were studied
most comprehensively in a Drosophila model (Fig. 1j)
[134]. Although the term is used broadly, attempts to
visualize the Polycomb bodies via correlative light
electron microscopy did not meet with success [135].
Polycomb protein complexes clustering in a limited
region of the nuclear space can be visualized by immu�
nofluorescence, but they look like separate hetero�
chromatin parts rather than individual nuclear bodies.
Polycomb bodies are often considered to be aggrega�
tions of Polycomb repressive complexes bound to
DNA [136, 137]. Yet Pirrotta and colleagues [138,
139] showed recently that an association of DNA with
Polycomb complexes is insufficient for recruiting the
corresponding genomic regions to Polycomb bodies.
An important role in the process is played by insulators
and, especially, the CTCF insulator protein [138–
140]. In contrast, a linear arrangement of genes bound
with Polycomb proteins can already provide for the
Polycomb body formation [138, 139]. Like in the case
of interactions between distant regulatory genomic ele�
ments, the chromosome organization in chromosome
territories imposes certain limitations on the spatial
interaction between targets of Polycomb proteins.
DNA regions located in one chromosome arm are pre�
dominantly involved in this interaction. A highly
dynamic character should be noted for Polycomb bod�
ies. The pattern of gene contacts in Polycomb bodies
varies among cells [138, 142]. The Polycomb protein
exchange rate is extremely high in chromatin and, in
particular, its fraction involved in Polycomb bodies
[143, 144]. Thus, a dynamic balance between assem�

Excluded
volume

Overlap

Fig. 2. Aggregation of large molecular complexes under
macromolecular crowding. In high�concentration macro�
molecule solutions, small molecules (small spheres) move
stochastically to continuously bombard large complexes
(large spheres), thus facilitating their aggregation into still
larger complexes. The aggregation generates an additional
space for small molecule movements.
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bly and disassembly of Polycomb bodies controls their
occurrence in a given nucleus or a given region of the
nuclear space.

Insulator bodies. Some of the Drosophila proteins
important for the insulator function accumulate to
produce foci in the nucleus [145]. The foci are known
as insulator bodies (Fig. 1k) [146]. Such a distribution
pattern was described for insulator proteins by many
research teams [147–149], but its functional signifi�
cance is still unclear. The association of insulators
(i.e., complexes of insulator proteins with the corre�
sponding DNA regions) in insulator bodies was ini�
tially believed to have a direct bearing on their func�
tion as regulatory elements of the genome [147, 150].
Yet more recent studies showed that insulator body
assembly is not essential for the insulator function
[151]. Insulator bodies are thought to act as depots to
store the insulator proteins in the nucleus [151].

Nuclear Compartments (Bodies) Not Associated 
with DNA Metabolism

It is rather difficult to say how many DNA�free
functional compartments are there in the nucleus. In
fact, many nuclear proteins display a focal (nonuni�
form) distribution in the nucleus at least in some cells
[152–155]. The most important compartments (PML
bodies, Cajal bodies, speckles, and some others) are
quite large and were identified by light or electron
microscopy long before the advent of immunostaining
(for more detail, see [2, 4, 93]). The compartments are
in the interchromatin domain [10, 74, 156], and many
of them are involved in primary transcript metabolism
(splicing, end processing, posttranscriptional RNA
modification, nuclear RNP assembly, etc.). Interest�
ingly, the majority of the compartments have varying
sets of protein components and are multifunctional,
displaying enzymatic activities characteristic of differ�
ent, often unrelated processes [4]. Many proteins
accumulating in various nuclear compartments are
essential for cell survival, but a vital role of their focal
accumulation is questioned by several experimental
findings (see below). Another fact to note is that some
of the compartments occur exclusively in certain cells
(e.g., cancer or rapidly proliferating cells). The num�
ber of compartments of a given type varies among indi�
vidual cells. The best�studied nuclear compartments
not directly associated with DNA metabolism are
considered below.

PML bodies (known also as ND10 bodies or Kre�
mer bodies) can be visualized by staining with anti�
bodies against the PML protein (translocations
involving its gene play a role in the development of
promyelocytic leukemia). PML bodies are spherical in
shape and vary in diameter from 0.1 to 1 µm (Fig. 1l).
In addition to PML, which seems to serve as a plat�
form for PML body assembly [157, 158]), more than
100 various proteins are found in PML bodies, sharing
the only common property of being a target for

sumoylation [92]. PML bodies are involved in the
antivirus immune response, DNA repair, tumor
growth suppression, gene expression regulation, pro�
teolysis, telomere shortening, cell cycle control,
senescence, and apoptosis [92, 159–161]. Tissue�spe�
cific contacts with certain genome loci were demon�
strated for PML bodies [162–164]. Considering the
multiplicity of functions ascribed to PML bodies
[165], their nonuniform composition is not surprising.
An association of PML with different protein sets can
yield different PML bodies [166]. It should also be
noted that a major portion of the nuclear PML pool
occurs in a diffuse form, rather than accumulating in
PML bodies [158]. PML bodies often degrade during
virus infection [167–169] and in stress [161, 166, 170].

Cajal and histone locus bodies. Cajal bodies are
nuclear compartments varying in shape and number
per nucleus (Fig. 1m). The most important of their
presumable functions are modifying small nuclear
RNAs (snRNAs) and small nucleolar RNAs (sno
RNAs) and assembling the corresponding RNPs
[4, 94]. In addition, Cajal bodies contain factors
responsible for the 3'�end processing of histone and
other non�polyA mRNAs and factors maintaining the
telomere integrity. Cajal bodies are associated with
transcribed snRNA genes in cultured cells, which is
possibly due to their binding with nascent transcripts
[171–173]. The role Cajal bodies play in 3'�end pro�
cessing of snRNAs and certain other non�polyA tran�
scripts is related to the Integrator multiprotein com�
plex contained in the bodies [174]. Telomerase was
shown to accumulate in Cajal bodies [175, 176]. Cajal
bodies are most likely involved in telomerase transport
to telomeres [177].

Histone locus bodies are highly similar in composi�
tion to Cajal bodies. In particular, the compartments
contain coilin, which is considered to be characteristic
of Cajal bodies. Histone locus bodies are assembled at
actively transcribed histone genes, but their function is
not related to regulating histone gene activity. Their
main function is the 3'�end processing of histone
mRNAs [94, 178]. Histone locus bodies are virtually
indistinguishable from Cajal bodies in amphibian
oocytes; the only difference is that the former are asso�
ciated with histone genes, while the latter are freely
suspended in the nucleoplasm [178, 179]. Given that
proteins and RNPs contained in histone locus bodies
(Mxc, FLASH, Mute, and U7 snRNP) are involved in
processing the 3' ends of histone mRNAs, the sub�
strate (nonprocessed histone mRNAs) could be
expected to nucleate body assembly. It was found in
contrast to this assumption that a short regulatory
DNA element occurring in the bidirectional promoter
of the histone H3 and H4 genes suffices to induce
assembly of minimal histone locus bodies (the so�
called protobodies, which contain only part of the
proteins found in functional bodies). Protobodies are
assembled even in the absence of histone gene tran�
scription [180]. However, another study of de novo
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assembly of nuclear bodies showed that various Cajal
body components (be they structural components,
such as coilin, or functional components, such as
snoRNPs or snRNAs specific to Cajal bodies) should
be recruited to certain chromatin regions as an essen�
tial prerequisite to starting assembly of functional
Cajal boies [181].

Although the proteins contained in Cajal and his�
tone locus bodies are important for cell survival, it is
unclear whether their accumulation in certain nuclear
compartments is necessary for their functions. First,
Cajal bodies do not occur in all cells of rapidly prolif�
erating populations [182]. Cajal bodies are absent
from the nuclei of certain differentiated cells in adult
tissues [183]. The number of Cajal bodies in the
nucleus seems to correlate with the intensity of snRNP
biogenesis [184, 185]. Interestingly, a mutation of the
gene for coilin, which is a main structural component
of Cajal bodies, is not lethal in flies [186]. The mutants
are fertile, though lacking Cajal bodies, and their snR�
NAs still undergo the modifications that normally
occur in Cajal bodies [187]. Cells cultured from tissues
of mice with a null mutation of the coilin gene harbor
the so�called residual Cajal bodies, which contain var�
ious combinations of proteins found in normal Cajal
bodies [188, 189]. Moreover, specific compartments
detected in some of the cells contain Cajal body�spe�
cific proteins, e.g., SMN (survival motor neuron),
which is a typical component of Cajal bodies [190,
191]. In some cases, SMN accumulates in specific
compartments known as the gemini of Cajal bodies
[192, 193]. Many proteins described as components of
Cajal bodies are similarly found in PML bodies and
nucleoli [194].

Nuclear speckles are specific compartments that
harbor components of the splicing system (various
snRNAs, SC35, and other spliceosome components).
The compartments were initially known as the inter�
chromatin granule clusters [195, 196] or SC35
domains [197]. Speckles are localized in the inter�
chromatin domain [10, 74, 196], are irregular in
shape, and vary in size (Fig. 1n) [197–199]. The
speckle distribution pattern depends on the transcrip�
tional status of the cell. An analysis of the nuclear
speckle proteome revealed approximately 150 proteins
with known functions, of which 80% were related to
RNA posttranscriptional modification [200, 201]. In
addition, lamins, various transcription factors, and
proteins involve in mRNA exports are found in speck�
les [202–204]. It is commonly thought that speckles
serve to temporally store the splicing components [95,
199, 205]. However, speckle destruction suppresses the
splicing [206], indicating that speckles are not merely
a store of splicing factors, but rather act as reaction
centers where RNP complexes involved in splicing
undergo maturation and assembly. Splicing occurs
cotranscriptionally according to current views and,
therefore, should take place in the perichromatin
space. However, certain actively transcribed genes are

found in the vicinity of nuclear speckles [207–211].
This localization presumably facilitates the recruit�
ment of splicing factors to actively transcribed genes.
Thus, nuclear speckles potentially play an important
role in spatial organization of euchromatic regions
[211]. Some authors think that nuclear speckles act as
reaction centers (hubs) where transcription, splicing,
and mRNA export are coordinated. A model was
advanced that genes are recruited to speckles, tran�
scription and splicing occur within the speckles or
close to their surface, and the resulting mRNA passes
through the internal speckle space and is directed to
the cytoplasm [212].

RELATIONSHIP BETWEEN NUCLEAR 
COMPARTMENTALIZATION 

AND CHROMOSOME FOLDING

It is clear that functional organization of the cell
nucleus is closely associated with spatial organization
of the genome [5–8, 213]. DNA recruitment to tran�
scription factories is often thought to affect the shapes
of interphase chromosomes and to provide a means for
establishing interchromosome contacts [54, 114, 115,
123, 125, 126, 214, 215]. As already mentioned, a sim�
ilar role is possible for the other DNA�free compart�
ments that are capable of recruiting certain genes
(PML bodies and nuclear speckles) [162–164, 207–
211]. A model popular a while ago postulated that the
positioning of nuclear compartments is mediated by
their recruitment to the nuclear skeleton (nuclear
matrix) [216, 217]. Nuclear compartments anchored
in this stable structure could provide landmarks for the
positioning of interphase chromosomes and chromo�
some domains. Although the model is attractive, the
available experimental findings are insufficient for it to
be more than speculative. The nuclear matrix is to a
great extent an elusive structure. Its existence in living
cells is still unproved [82]. Even if the nuclear matrix
does exist, many efforts will be necessary to explain
how the nuclear compartments are positioned. Inter�
actions of DNA regions with the nuclear lamina are
still the only example where certain chromatin
domains are anchored on a positionally stable nuclear
structure (Fig. 1g). The interactions probably contrib�
ute to the proper radial positioning of inactive and
active segments of interphase chromosomes. However,
a filamentous structure similar to the cytoskeleton is
absent from the interior of the nucleus. Moreover,
while nuclear speckles were characterized as quite sta�
ble structures whose positions within the nucleus
remain unchanged for hours [205, 218], PML and
Cajal bodies diffuse in the interchromatin space as
freely as an artificial inert entity of the same size [219].
Data are accumulating that the ordered organization
of the eukaryotic nucleus is a product of balanced
effects of various forces, in particular, the forces due to
macromolecular crowding (Fig. 2) [132, 220–222]. It
is clear that the interplay of various processes occur�
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ring in the nucleus at a given time guides both chromo�
some folding and the spatial compartmentalization of
the cell nucleus [7, 222–224].

To obtain an integral picture of this complex orga�
nization, it is necessary to consider the mechanisms
that sustain assembly of nuclear compartments. It
should be noted in this respect that all of the above
nuclear compartments lack many properties charac�
teristic of regular structural entities. They vary in
shape, size, and number in the cell and may be absent
from some cells, even from a fraction of cells cultured
in one Petri dish. Compartments of the same type
(e.g., Cajal or PML bodies) may contain different pro�
tein ensembles and perform different, sometimes
unrelated, functions. The majority of proteins found
in nuclear bodies occur in the nucleoplasm as well,
and the rate of protein exchange between the nucleo�
plasm and bodies is rather high. Taken together, the
observations indicate that stochastic processes play a
substantial role in assembly [220, 225, 226].

The concentration of macromolecules in the
eukaryotic cell nucleus is so high that assembly of
nuclear compartments may proceed via self�organiza�
tion and obey the laws describing the behavior of mol�
ecules and their complexes in high�concentration
solutions [132, 220, 221]. Large entities tend to aggre�
gate to produce even larger complexes in these condi�
tions, creating an additional space for small molecules
moving stochastically. Small molecules continuously
bombard large complexes on many sides, thus sup�
porting their integrity (Fig. 2) [133, 220, 224, 227,
228]. Forces acting under macromolecular crowding
are assumed to play an important role in stabilizing the
nuclear compartments or bodies, and the assumption
has experimental support [221, 224]. Hence, nuclear
bodies are sometimes considered to be transient,
entropically advantageous macromolecular com�
plexes in the congested nuclear space [222, 229]. It
was even assumed that nuclear bodies play no role and
that only the enzymes and proteins occurring in the
bodies are essential [230]. There are observations
indeed that disruption of nuclear bodies by knocking
out their important structural components (such as
coilin in the case of Cajal bodies [186, 187]) has no
effect on the cell viability provided that components of
the disrupted bodies remain in the nucleoplasm. How�
ever, gathering the proteins involved in one process
together in nuclear bodies could be advantageous in
special conditions (rapid proliferation, stress, etc.).
The issue deserves further investigation.

Although nuclear bodies have some properties of
stochastic conglomerations of proteins and their com�
plexes, the protein sets from nuclear bodies of differ�
ent types overlap only in part. The forces acting under
molecular crowding can explain the stability of mac�
romolecular ensembles, but not the specificity (or par�
tial specificity) of their composition. It is possible to
think that the proteins combined in a particular
nuclear compartment have affinity for each other or

for a structural component essential for assembling
compartments of the given type. The latter assump�
tion better agrees with experimental findings [231].
Coilin and PML are necessary for assembling Cajal
and PML bodies, respectively [157, 186], and the
finding agrees with the assumption that the proteins
provide a platform for nuclear body assembly. In addi�
tion, noncoding RNAs can act as an assembly plat�
form, as is evident from studies of paraspeckles (yet
another type of nuclear bodies with an unclear func�
tion) [232]. Various Cajal body components immobi�
lized in a preset chromatin region were shown to ini�
tiate assembly of a functional Cajal body [181]. At first
glance, the observation supports the idea that various
Cajal body components have affinity for each other.
However, if affinity for coilin is characteristic of all of
the Cajal body components, then any of the compo�
nents should recruit coilin, which, in turn, should
recruit all other components, eventually resulting in a
functional Cajal body. Several models were advanced
to describe assembly of nuclear bodies, including con�
secutive (ordered) assembly, stochastic assembly, and
seeding of nuclear bodies [2, 93]. The last model
agrees best with experimental finings. The model pos�
tulates that a special seeding event (like a crystalliza�
tion center appearing in a solution) should occur to
initiate assembly of a nuclear compartment. Assembly
does not follow any special order [93, 233]. A seeding
event can be related to the function of the given com�
partment. As was shown using in vivo fixation, an
accumulation of several coding and noncoding RNAs
in a certain region of the nucleus initiates assembly of
various nuclear compartments that serve for the mat�
uration of these RNAs [234]. Transcription was con�
cluded to be the force that drives the formation of
nuclear bodies. Accordingly, primary transcripts were
assumed to provide a framework for nuclear bodies of
various types to form around [234, 235].

The most interest question in the context of this
review is how the spatial organization of interphase
chromosomes is related to the functional compart�
mentalization of the cell nucleus. The idea that chro�
mosome folding guides the nuclear compartmental�
ization seems at first glance to contradict the idea that
the interaction of genomic loci with nuclear compart�
ments is necessary for a specific architecture of inter�
phase chromosomes, but this is not exactly so. Both of
the ideas are, in fact, correct. While a basal compart�
mentalization of the nuclear space, including the for�
mation of the interchromatin domain, is guided by the
territorial organization of chromosomes, the interac�
tions of individual chromosome loci with each other in
the interior or on the surface of nuclear compartments
play an important role in guiding the chromosome
structure. Assuming that an internal skeletal structure,
such as the nuclear matrix [82], is absent from the
nucleus, the chromatin fiber network can be assumed
to provide a structural basis for nuclear compartmen�
talization [5–8, 213]. Segregation of interphase chro�
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mosomes and the consequent formation of chromo�
some territories (Fig. 1i) can be explained in terms of
physical properties of charged polymers [83–86]. The
formation of channels within chromosome territories
is less clear. We think that repulsion between topologi�
cal domain surfaces plays a key role in the process. The
surface of a domain may have a greater charge as com�
pared with its interior. This asymmetric charge distri�
bution within a topological domain possibly arises
because transcriptionally active chromatin regions,
which are known to be rich in hyperacetylated his�
tones, tend to occur at the domain surface. The nega�
tive charge of DNA is partly neutralized as DNA asso�
ciates with positively charged histones. The positive
charge of histones is lower in transcriptionally active
regions because their histones are extensively acety�
lated. Hence, the topological domain surface (where
transcriptionally active regions predominantly occur,
see Chromosome Territories) should have a greater
negative charge as compared with interior regions.
This charge distribution may prevent the topological
domains from interfusion and facilitate the formation
of interchromosomal channels. Taken together, the
above findings indicate that physical factors are mostly
responsible for the general landscape of nuclear com�
partmentalization [83, 223, 236, 237]. Once estab�
lished after mitosis, the territorial organization of
interphase chromosomes is stabilized by the interac�
tions of certain regions with the nuclear lamina and
perinucleolar compartment. The nucleolus is the main
nuclear compartment, and its positioning in the
nucleus is apparently guided by the spatial organiza�
tion of the chromosomes that harbor active nucleolus�
organizing regions. Heterochromatic regions of vari�
ous chromosomes are anchored in the perinucleolar
and peripheral nuclear layers (Fig. 1), and intercon�
nected chromosome domains form as a result, provid�
ing a structural basis (chromatin framework) for
nuclear compartmentalization. The chromosome
domains remain highly dynamic. Their structure can
be further modulated as inter� and intrachromosomal
contacts are established. An association of different
genomic loci within a functional nuclear compart�
ment must play an important role in the process. We
think that compartments start forming around certain
genomic regions as a result of functional activity of the
regions (e.g., to process the newly synthesized tran�
scripts [234, 235]). Microcompartments originating in
different sites may then fuse to produce functional
nuclear bodies owing to affinities of their components
and the forces arising under macromolecular crowd�
ing. The genome regions associated with the micro�
compartments will therefore remain spatially close to
each other as long as the processes that have initiated
microcompartment assembly continue. The probabil�
ity for two genome regions to be involved in organizing
a nuclear body is determined primarily by their initial
spatial proximity because movements of genome loci
and protein complexes bound to them are only local

and obey the laws of Brownian motion [89, 238–241].
Although certain findings indicate that active trans�
port of genome loci or total chromosome territories is
possible in the nuclear space and involves actin–myo�
sin motors [242–246], the assumption still lacks suffi�
cient experimental support. Thus, it is questionable if
such a transport mechanism is universal in the
nucleus.

The frequency at which regulatory elements are
brought together within or close to a nuclear compart�
ment can be modulated by various factors, as assumed,
for instance, for tissue�specific genes recruited to one
transcription factory [54, 241]. At the same time, the
nuclear organization as a whole and the total set of
contacts between distant genomic elements (the so�
called interactome) are highly dynamic and stochastic
by their nature. A typical configuration of an inter�
phase chromosome is determined by a balance of sev�
eral possible configurations [55]. Thus, an ordered
character of nuclear organization results from a chain
of stochastic events, and little is predetermined in the
establishment of this character.

CONCLUSIONS

The spatial organization of interphase chromo�
somes and the functional compartmentalization of the
cell nucleus were studied separately for a long time. It
becomes clear now that the two problems are closely
related. Eukaryotic chromosomal DNA packaged in
chromatin most likely provides a structural basis for
the spatial compartmentalization of the cell nucleus
and assembly of functional compartments. A highly
dynamic character should be emphasized for chromo�
some folding and the functional compartmentaliza�
tion of the cell nucleus. Chromosomes can assume
many alternative configurations on evidence of fluo�
rescence in situ hybridization [54, 247] and HiC anal�
ysis [55], and nuclear compartments are continuously
assembled and disassembled, as is evident from the
high exchange rates of their components [248]. Thus,
the order is to an extent illusive in the eukaryotic cell
nucleus, arising from stochastic events and being
based on a continuous selection among a variety of
possibilities, which provide for rapid adaptation of the
genome function to changing environmental condi�
tions. 
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