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Abstract—The review summarizes the results of recent studies of microbial communities of the Lake Baikal
sediments obtained using diverse techniques. In the sediments of the areas of stable sedimentation metabar-
coding revealed predominance of members of the phyla Alpha- and Gammaproteobacteria (including Betapro-
teobacteriales), Bacteroidetes, Acidobacteria, Verrucomicrobia, and Thaumarchaeota, which are also common
in other freshwater lakes. In the areas of discharge of gas-bearing mineralized f luids, the structure of micro-
bial communities varied depending on the presence of electron acceptors and intensity and component com-
position of gas-bearing f luids responsible for microbial migration from the deep zone to the upper sediment
layers and vice versa. Methanogenic archaea detected in Baikal sediments belonged to the groups capable of
all four known catabolic pathways of methanogenesis: hydrogenotrophic, acetoclastic, methylotrophic, and
hydrogen-dependent methylotrophic ones. Predominant members of the Baikal archaeal community,
hydrogenotrophic methanogens of the family Methanoregulaceae (genera Methanoregula and Methano-
sphaerula, as well as uncultured lineages), hydrogen-dependent methylotrophic archaea of the order Metha-
nomassiliicoccales, and acetoclastic methanogens of the family Methanosaetaceae (genus Methanothrix (Meth-
anosaeta)), were the same as in methanogenic communities of other freshwater lakes. Experimental evidence
was obtained for anaerobic methane oxidation (AOM) via the nitrate- and nitrite-dependent pathways by
archaea of the ANME-2d subcluster and bacteria of the phylum NC10. Structures of the 16S rRNA genes,
mcrA, and pmoA exhibited high identity to those of the known freshwater organisms performing this process.
Diversity of microbial communities at the sites of natural oil seepage differed at the order and family levels,
as well as by the presence of alkane hydroxylases in the genes of the cultured species.
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SEDIMENTS OF LAKE BAIKAL AS A HABITAT 
FOR MICROORGANISMS

Lake Baikal is the deepest and the most ancient
lake in the world. The total volume of its sediments is
approximately 75 thousand km3, and their maximum
thickness is more than 9 km (Logachev, 2003). The
Baikal depression, with a maximum depth of 1642 m,
is located in the center of a tectonically active rift zone;
the oldest deposits date back to the Oligocene age
(Hutchinson et al., 1992; Mats et al., 2001). The
depression is divided into three basins: South, Central,
and North. They are separated from each other by the
following seamounts: the Buguldeika Saddle and the
Academician Ridge (Fig. 1). The sediments in the
three deep-water parts of the lake have an identical
chemical composition, which is a result of homogeni-
zation of fine fractions and incoming terrigenous
material carried by steady currents (Gvozdkov, 1998).
The entire central part of the lake bottom is occupied
by diatomaceous silts; the average concentration of

biogenic silicon in the surface silts of the pelagic zone
is 19%. Up to 90% of the bottom is covered with sedi-
ments containing. more than 10% of biogenic SiO2.
(Granina, 2008). In the Lake Baikal sediments, the
average Corg concentration is 1.9%; in the sediments of
South and Central Baikal, it is 1.5–2.5%, while in the
North basin, its concentration is 1.0–1.3% (Vykhris-
tyuk, 1980). These values are comparable to those
determined in oceanic sediments in highly productive
continental margins (Qiu et al., 1993). According to
the data reported by L.A. Vykhristyuk (1980), the
composition of the buried organic matter (OM)
includes humic acids and cellulose, as well as signifi-
cantly decomposed remains of higher terrestrial plants
and phytoplankton, which are highly resistant to fur-
ther degradation.

Geochemical processes in the sediments of Lake
Baikal have been the subject of research by many
authors (Mizandrontsev, 1975;Pogodaeva et al., 2007,
2017; Granina, 2008; Och et al., 2012). One of the
298
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Fig. 1. Schematic map of Lake Baikal and areas of research: d, mud volcano; s, methane seep; h, oil seep; n, thermal vent. 
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most important characteristics of Lake Baikal is a
widespread oxidative stage of early diagenesis
(Granina, 2008). The depth of oxygen penetration
into the sediments is from <2 to >50 mm; the thick-
ness of the oxidized layer is from 0.2 to >30 cm. The
pH values in the sediment are mainly from 6.9 to 7.4,
with the range from 6 to >8 (Mizandrontsev, 1975;
Granina, 2008). According to I.B. Mizandrontsev
(1978), deep penetration of oxygen is due to the slow
accumulation of sediments in Lake Baikal, and the
surface sediments are oxidized on most of the bottom
(Granina, 2008). Sedimentation rates in open Baikal
vary from 0.015 to >1 mm per year (Coleman et al.,
1993; Vologina et al., 2000).

Pore water of sediments in the areas with normal
sedimentation inherits the chemical composition of
lake water; it is characterized by a homogeneous salt
composition. The most common ions dissolved in
Lake Baikal are  and Ca2+. Regarding biogeo-
chemical cycles, a very low concentration of dissolved

3HCO−
MICROBIOLOGY  Vol. 90  No. 3  2021
 in the water of Lake Baikal (0.05 mM) is the
most important difference from seawater (28.9 mM)
(Aloisi et al., 2019). Other ions that compose the
majority of dissolved salts in seawater (Cl–, Na+,
Mg2+, and K+) are present in the water of Lake Baikal
at very low concentrations (≤0.15 mM) (Pogodaeva et
al., 2007, 2017). During diagenetic transformations,
the total concentration of ions in the pore water
increases with the depth of the sediment due to an
increase in the concentrations of bicarbonate and cal-
cium ions. Due to the lack of electron acceptors 
and  most dissolved inorganic matter, formed
after OM decomposition and the subsequent redox
reactions, is in the form of CO2, rather than 
which results in lower pH values in diagenetic environ-
ments (Mizandrontsev, 1975). OM replenishment
occurs annually due to the massive development of
diatoms in spring and autumn (Votintsev et al., 1975)
and of picoplankton in summer (Nagata et al., 1994).

2
4SO −

2
4SO −

3NO ,−
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Using sedimentation traps, the presence of diatom
shells and organic matter of autochthonous origin has
been shown at all depths of the water column (Volog-
ina and Shturm, 2017), while only 10% of picoplank-
ton reaches the bottom.

MICROBIOLOGICAL STUDIES 
OF THE SEDIMENTS IN LAKE BAIKAL

Microbiological studies of the sediments of Lake
Baikal have been carried out since the beginning of the
previous century using approaches and methods that
are widely used in aquatic microbiology. Research
fields and main results have been reported in mono-
graphs and numerous papers (Mikroorganizmy…,
1985; Namsaraev and Zemskaya, 2000; Mikrobiolog-
icheskoe nasledie…, 2004). Leading microbiologists of
Russia worked at Lake Baikal, including S.I. Kuz-
netsov, A.E. Criss, Yu.I. Sorokin, A.P. Romanova,
A.G. Rodina, G.A. Dubinina, V.N. Maksimov,
E.A. Maksimova, and B.B. Namsaraev. Their publi-
cations provide information about microbial abun-
dance in the Lake Baikal sediments in various geo-
chemical environments. The distribution of microbial
physiological groups in different areas and at different
depths of the sedimentary layers has been analyzed;
the metabolic activity of microbial communities,
including those in the areas with increased anthropo-
genic impact, has been assessed (Mikroorganizmy…,
1985; Namsaraev and Zemskaya, 2000; Mikrobiolog-
icheskoe nasledie…, 2004). A new stage of research into
the role of microbial communities in the sediments
has begun during the period of large-scale geological
and geophysical studies carried out by international
scientific teams at Lake Baikal since the late 1990s.
During these years, the main attention was paid to the
study of microorganisms participating in different
stages of OM decomposition and to assessment of the
rates of the degradation of organic matter in the sedi-
mentary layers of Lake Baikal (Maksimova and Mak-
simov, 1989; Namsaraev and Zemskaya, 2000;
Pimenov et al., 2014). The development of certain
physiological microbial groups in sediments was
found to be determined by availability of the sub-
strates, oxidized or reduced conditions at certain
depths of the sedimentary strata, and the influx of gas-
bearing mineralized f luids from deep sediments.
Annual supply of organic matter to the sediments and
the low concentrations of sulfate ions determine the
predominance of the methane generation process at
the final stages of destruction.

MICROBIAL DIVERSITY IN THE SEDIMENTS 
OF LAKE BAIKAL

Progress in assessment of the diversity of microbial
communities has been achieved using molecular bio-
logical methods and approaches. Application of the
methods for the 16S rRNA and mcrA gene sequencing,
data on the diversity and functioning of microorgan-
isms in the sediments with different pore water com-
position were obtained (Shubenkova et al., 2005; Kad-
nikov et al., 2012; Chernitsyna et al., 2016; Lomakina
et al., 2018). Similarly to other freshwater lakes, the
taxonomic composition of microbial communities at
different sediment depths in Lake Baikal varied and
was determined by the presence of oxidants, the con-
centration and composition of available OM, as well as
of other vital elements (Kuznetsov, 1970; Zavarzin,
2003; Huang et al., 2019; Han et al., 2020). In some
cases, microbiomes in the sediments of the same area
and similar environments differed in the contribution
of the predominant taxa (Zemskaya et al., 2018;
Zakharova et al., 2018). In other cases, their similarity
to microbiomes from other areas and sediment layers
was noted (Shubenkova et al., 2005; Kadnikov et al.,
2012; Zemskaya et al., 2015a; Chernitsina et al., 2016;
Bukin et al., 2016; Lomakina et al., 2018). Organo-
trophic bacteria typical of freshwater lakes (Actinobac-
teria, Proteobacteria, and Verrucomicrobia) predomi-
nated in the communities of oxidized sediments and to
the lower border of oxygen penetration (2 cm). For
these bacteria, participation in the first stages of deg-
radation of organic compounds was shown (Newton
et al., 2011). A significant contribution of members of
the first two phyla to bacterial communities is charac-
teristic of the oxidized layers of all studied sediments
of Lake Baikal, while predominance of the phylum
Verrucomicrobia was observed only in some communi-
ties (Kadnikov et al., 2012; Zemskaya et al., 2015a,
2018; Zakharova et al., 2018). According to the data on
genomic structure of the microorganisms from the
same taxonomic groups that were identified in the aer-
obic zone of Lake Baikal sediments (mainly Alpha-,
Beta-, and Gammaproteobacteria, Bacteroidetes, Aci-
dobacteria, Verrucomicrobia, and Planctomycetes), as
well as of their closest relatives, the oxidized zone is
colonized by aerobic and facultatively anaerobic bac-
teria that oxidize carbohydrates, amino acids, and
fatty acids (Yoon et al., 2008; Pujalte et al., 2014; Sun
et al., 2016) and aerobic nitrifying archaea (MGI and
SCG) (Spang et al., 2012; Cabello-Yeves et al., 2020;
Han et al., 2020). As a rule, at the border of the oxic
and anoxic zones, the contribution of the members of
Bacteroidetes belonging to the families Flavobacteria-
ceae and Sphingobacteriaceae, as well as of unclassified
microorganisms, increased, with a high contribution
of the taxa predominating in the upper sediment lay-
ers. Predominant sequences retrieved from the anoxic
zone of the sediment, in particular, from the zone of
occurrence of the ferromanganese formation (FMF),
belonged to organisms of unknown taxonomic posi-
tion, positively correlating with the concentration of
manganese ions, and to Alpha- and Betaproteobacte-
ria, associated with the content of iron ions (Zemskaya
et al., 2018). According to Torres et al. (2014), Mn(IV)
(and potentially Fe(III)) can act as oxidants in the
microbiologically mediated nitrification process.
MICROBIOLOGY  Vol. 90  No. 3  2021
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Indeed, in the communities of the core studied by us
(below the oxygen penetration limit), the contribution
of nitrite-oxidizing bacteria of the phylum Nitrospirae
increased, and the presence of archaea of the phylum
Thaumarchaeota, which are responsible for the pro-
cesses of ammonium oxidation to nitrite, was shown.
Their participation in nitrogen metabolism was con-
firmed by metagenomic analysis of genomes (MAGs)
from the deep zone of South Baikal (Cabello-Jeves
et al., 2020). In the genomes of microorganisms,
including those belonging to these taxa, the genes
responsible for oxidation of ammonium and nitrite,
decomposition of urea and cyanate, or assimilation of
nitrates/nitrites, as well as denitrification, were
revealed. Members of the phylum Firmicutes, the cul-
tured strains of which were shown to participate in the
oxidation of Fe(II) and Mn(II) in Lake Baikal
(Zakharova et al., 2010), constituted an insignificant
part of the community from the upper layer of the
FMF and contributed more significantly to the bot-
tom layer (7.6%). Most of them belonged to the genera
Bacillus and Clostridium, the identity of which to the
cultured ferromanganese bacteria from Lake Baikal
was not confirmed. During the study of the microbial
communities from the sediments in Lake Stechlin and
five lakes of Central Switzerland, changes in the com-
position of microbial communities during the change
from oxidized to reduced conditions were noted
(Wurzbacher et al., 2017; Han et al., 2020). The
authors believe that the diversity of communities in
these zones was determined by changes in OM
sources, respiratory reactions, and selective survival of
microorganisms. Therefore, the taxa that were already
present in the sediments during sedimentation may be
better adapted to the conditions of low availability of
energy sources and should predominate with an
increase in the sediment depth (Lever et al., 2015;
Starnawski et al., 2017; Rissanen et al., 2019). This
agrees with our data on the diversity of microbial com-
munities in the sediments of South Baikal. We noted
an increase in the contribution of the members of Bac-
teroidetes, Alpha-, and Betaproteobacteria to the
microbial community of the sediment at a depth of 8–
9 cm, while in the surface sediment layer they were
detected as minor components. According to the data
(Kolman et al., 1993; Vologina et al., 2000), the esti-
mated age of the sediment at this depth is 100–
500 years, and, probably, members of these taxa
proved to be more adapted to the existence in low-
energy environments. Cultured members of the taxa
from this zone are chemoorganotrophs, chemolitho-
trophs, and facultative photoheterotrophs; they are
found in various biotopes. Noteworthy, the bacterial
community in deep (up to 4 m) layers of sediments in
Lake Baikal is also diverse (Chernitsyna et al., 2016;
Zemskaya et al., 2015a; Bukin et al., 2016; Lomakina
et al., 2018).

Archaea are important components of microbial
communities in the Lake Baikal sediments. Their
MICROBIOLOGY  Vol. 90  No. 3  2021
presence was recorded starting from the first centime-
ters of oxidized sediments, as well as their higher diver-
sity in buried oxidized sediments and in the layers with
high concentrations of manganese and iron
(Zemskaya et al., 2018). The phylum Thaumarchaeota
(Marine Group I lineage), which is widespread in soil
and aquatic ecosystems and participates in aerobic
ammonium oxidation, is one of the predominant taxa
in the Lake Baikal sediments (Walker et al., 2010). In
the sediments from different areas of Lake Baikal,
clusters of sequences related to the cultured species
Nitrosopumilus maritimus of the MGI lineage and to
uncultured members of this phylum were identified
(Lomakina et al., 2018). Representatives of the phyla
Euryarchaeota (Uncultured Methanomicrobia), Ba-
thyarchaeota, Aigarchaeota, Aenigmarchaeota, Woe-
searchaeota, Thaumarchaeota, and Hadesarchaeota
(former SAGMEG-1) were found in the sediments of
the reference areas. Members of the uncultured
Marine Benthic Group D (MBG-D) lineage of the
order Thermoprofundales, previously related to Ther-
moplasmatales and widespread in freshwater and
marine habitats, were also identified (Schubert et al.,
2011). Their significant contribution was noted in the
communities of methane seeps (Beal et al., 2009) and
sediments from Lake Pavin (Borrel et al., 2012). It is
assumed that they can carry out protein degradation in
marine sediments, as well as participate in the pro-
cesses of methanogenesis or anaerobic oxidation of
methane (AOM) (Schubert et al., 2011).

A different composition of archaea was observed in
sedimentary layers of the zones of seepage of mineral-
ized gas-bearing f luids. Pore water at these sites is
characterized as bicarbonate-sulfate, sulfate, or chlo-
ride water (Mizandrontsev, 1975; Klerks et al., 2003;
Granina, 2008; Minami et al., 2010; Zemskaya et al.,
2015a; Pogodaeva et al., 2020). The composition of
pore water was significantly affected by the intensity of
fluid f lows and the specific composition of chemical
components (Aloisi et al., 2019). The mechanisms of
migratory f luid f lows in the areas of mud volcanoes
and methane seeps proved to affect also the composi-
tion and structure of microbial communities (Shuben-
kova et al., 2005; Kadnikov et al., 2012; Lomakina
et al., 2014, 2018; Zemskaya et al., 2015a; Chernitsyna
et al., 2016; Bukin et al., 2016). In particular, in the
area of the Krasny Yar methane seep, the inflow of
oxygen-saturated surface sediments and aerobic
microorganisms to a depth of more than 1 m was
shown. In the sediments of the seep on the Posolsk
Bank uplift, the deep microflora was found on the sed-
iment surface due to the functioning of the f luid loop
(Nauds et al., 2012; Chernitsyna et al., 2016; Pogo-
daeva et al., 2020). The special routes of migration of
fluid f lows circulating in the zone of stability of gas
hydrates (400 m) explain the presence of significant
numbers of sequences assigned to the phyla Chlorof-
lexi and Acidobacteria, as well as to the candidate phyla
Aminicenantes and Atribacteria, in the surface layers of
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sediments, and of the phylum Deinococcus–Thermus
in deep sediments. In the zones with especially intense
flows of mineralized f luids and gases, formation of
microbial mats of two types was noted: with the pre-
dominance of colorless sulfur bacteria (Kuznetsov
et al., 1991) or methanotrophic bacteria (Zemskaya
et al., 2015b). Microbial communities, the functioning
of which is based on methanotrophy, are characteristic
of forest soils, meadows, rice fields, wetlands, and sed-
iments in freshwater, saline, or alkaline lakes (Ding
and Valentine, 2008). The presence of large fields of
microbial mats was detected over massive layers of
methane hydrates in the bathypelagic zone of Central
Baikal using the Mir submersibles, where they pro-
vided for the vital activity of a wide range of benthic
animals (Zemskaya et al., 2012; Sitnikova et al., 2017).
Intense methane f luxes formed due to the dissolution
of methane hydrates and the activity of hydrogeno-
trophic methanogens allowed the development of
microbial mats of methanotrophic and methy-
lotrophic bacteria in the oxic layer (Kadnikov et al.,
2012; Zemskaya et al., 2015b). These mats were con-
sumed by benthic animals, as was confirmed by the
carbon isotopic composition of benthic animals from
this area (Zemskaya et al., 2012). In the community of
microbial mats, members of the genera Methylobacter,
Methylophilus, and Methylotenera, which inhabit vari-
ous cold-water ecosystems (Dedysh et al., 2001;
Pacheco-Oliver et al., 2002) and possess enzyme sys-
tems that are responsible for various steps of methane
oxidation to CO2 and biomass, were identified. Under

the mat layer, the proportion of archaea was approxi-
mately 2/3 of the entire microbial community in the
surface sediment layers of this area (Kadnikov et al.,
2012), including anaerobic methanotrophs “Candida-
tus Methanoperedens sp.” (ANME-2d) and hydrog-
enotrophic methanogens of the genus Methano-
sphaerula. In the area of intense mineralized f lows in
other areas of Lake Baikal, microbial mats in which
the dominant role belonged to colorless sulfur bacteria
of the genus Thioploca were also formed (Kuznetsov
et al., 1991; Zemskaya et al., 2001). Similar to marine
members of this genus, sulfur bacteria inhabiting Lake
Baikal carry out the process of sulfide oxidation cou-
pled to nitrate reduction; they are chemoorganohet-
erotrophs (Zemskaya et al., 2001). The functioning of
the community of bacterial mats in this area, as well as
in the areas of marine methane seeps, is provided by
chemosynthesis and methanotrophy (Namsaraev and
Zemskaya, 2000; Ding and Valentine, 2008).

MICROORGANISMS INVOLVED 
IN METHANE GENERATION PROCESS

Methane was previously shown to be the main ter-
minal product of OM degradation in the sediments of
Lake Baikal (Namsaraev and Zemskaya, 2000;
Dagurova et al., 2004), and the processes of its bio-
genic formation can extend hundreds of meters deep
into the sedimentary layer of the lake (Kuz’min et al.,
2001). In the zones of hydrocarbon discharge, silts of
the low-temperature Frolikha vent, and the sediments
of several areas with a high content of organic matter,
5.0–534.7 μL of CH4/kg per day were generated,

which corresponded to the rates of methane genera-
tion in other oligotrophic and mesotrophic freshwater
lakes (Duc et al., 2010; Fuchs et al., 2016; Yang et al.,
2020). However, the rate of methanogenesis in the ref-
erence regions of the pelagic zone of the lake was lower
(0.01–32.29 μL CH4/kg per day) and comparable to

that in the sediments of highly productive areas of the
ocean and saline meromictic lakes Shira and Shunet
(Capone and Kiene, 1988; Kallistova et al., 2006).
Similar to many other freshwater lakes, due to low sul-
fate concentrations in pore water, the upper boundary
of the methane generation zone in the sediments of
Lake Baikal is determined only by the depth of O2 pen-

etration (Namsaraev and Zemskaya, 2000; Koizumi
et al., 2003; Conrad et al., 2007). For instance, in the
areas of seeps, mud volcanoes, and an underwater
low-temperature vent, active methane production was
recorded already in the first centimeter of sediments
reduced from the surface (Namsaraev and Zemskaya,
2000; Dagurova et al., 2004), while methane and eth-
ane supplied with a deep f luid and bound in the struc-
ture of gas hydrates, were of biogenic, thermogenic, or
mixed biogenic-thermogenic origin (Klerks et al.,
2003; Kalmychkov et al., 2006). The vertical distribu-
tion pattern of methane generation in such areas var-
ied, although high values of methanogenesis rates
were often recorded in surface silts to the depths of
20–30 cm, with subsequent bursts of activity in sepa-
rate deep layers (Namsaraev and Zemskaya, 2000;
Dagurova et al., 2004). Studies carried out in the
zones unaffected by hydrocarbon discharge showed an
almost linear increase in methane content in the sedi-
ments up to the depths of 2–2.5 m. This correlated
with the content of bicarbonate ion released during
diagenesis of organic matter (Pogodaeva et al., 2017).
However, in some cases (from 2.5 m to the lowest
exposed layers, during the transition to blue-gray
clays), an abrupt increase in methane concentrations
and rates of methane generation was noted, which also
confirmed the presence of active methanogenic com-
munities in the deep sedimentary layers of Lake Baikal
(Namsaraev and Zemskaya, 2000).

Methanogenic archaea are known to be able to use
a very limited range of substrates formed at the initial
stages of anaerobic OM degradation as carbon and
energy sources. Among them, H2 : CO2, acetate, and

C1-methylated compounds (methanol, methyl-

amines, methyl sulfides, etc.) were noted. These com-
pounds are consumed by hydrogenotrophic, aceto-
clastic, and methylotrophic methanogens, respec-
tively (Thauer et al., 2008). In the sediments of deep-
water zones of stratified lakes, the contribution of ace-
toclastic methanogens often increases, which is due to
MICROBIOLOGY  Vol. 90  No. 3  2021
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the activity of homoacetogenic microorganisms
(Schulz and Conrad, 1996; Nozhevnikova et al.,
2007). Under psychrophilic conditions, homoaceto-
gens can efficiently compete with hydrogenotrophic
methanogens for H2, reducing CO2 to acetate; the lat-

ter is accumulated in the sediment and disproportion-
ated to methane by acetoclastic methanogens (Kot-
syurbenko et al., 2005). However, in Lake Baikal, pre-
dominance of acetoclastic methanogenesis was shown
only in the sediments of shallow-water areas. In sedi-
ments of the deep-water zone, 75–100% of methane
was generated from H2 : CO2 and acetate concentra-

tions varied from 4 to 98 μmol/L (Namsaraev and
Zemskaya, 2000). A high contribution of hydrogeno-
trophic methanogenesis (99%) was noted even in the
area of the low-temperature Frolikha vent, in which
acetate content can reach 1 mmol/L in pore water and
a large proportion (25%) of acetoclastic methanogens
was determined among archaea (Lomakina et al.,
2018). The exact cause of this phenomenon has not
been clarified. Hydrogen concentration in the gas
composition of the sedimentary layers of Lake Baikal
does not exceed 0.0632 vol % (Kuz’min et al., 2001).
Moreover, the temperature of sediments in the deep-
water area of the lake (≤4°C) makes syntrophic acetate
oxidation thermodynamically unfavorable, which
does not explain the prevailing hydrogenotrophic
pathway by the additional inflow of hydrogen or utili-
zation of acetate bypassing acetoclastic methanogene-
sis, as in Lakes Kivu and Kinneret (Nulssein et al.,
2001; Pasche et al., 2011). Possibly, the high contribu-
tion of CO2 reduction may be due to its greater ther-

modynamic advantage under the conditions of the
sedimentary layers of the pelagic zone (in comparison
with acetoclastic methanogenesis), together with the
presence of the pool of active psychrotolerant hydrog-
enotrophic methanogens and acetate-consuming sul-
fate-reducing bacteria in the communities (Bukin
et al., 2018). It should be noted that predominant for-
mation of methane during CO2 reduction occurs also

in the sediments of cold-water Antarctic (Wand et al.,
2006) and alpine lakes (Mandic-Mulec et al., 2012), as
well as in the lakes of the Tibetan Plateau (Liu et al.,
2017).

Apart from H2 : CO2, methylated substrates can

also play an essential role in methane formation in the
sediments of Lake Baikal. During the cultivation of
the native sediment from the surface layer under
anaerobic conditions in the medium containing meth-
anol, active methane generation from methanol,
which involved methylotrophic archaea of the family
Methanosarcinaceae, was observed (Bukin et al.,
2018).

Using the methods of immunofluorescence stain-
ing (Namsaraev and Zemskaya, 2000), cultivation
(Pavlova et al., 2014; Bukin et al., 2018), and the 16S
rRNA and mcrA gene sequencing (Shubenkova et al.,
2005; Kadnikov et al., 2012; Lomakina et al., 2014,
MICROBIOLOGY  Vol. 90  No. 3  2021
2018; Chernitsyna et al., 2016), it was found that lake
sediments contained archaea capable of generating
methane via all four catabolic pathways known:
hydrogenotrophic (Methanoregulaceae, Methanobac-
teriaceae, Methanocellaceae, Methanocaldococcaceae,
and “Ca. Methanoflorentaceae”), acetoclastic (Meth-
anosaetaceae), methylotrophic (Methanosarcinaseae),
and hydrogen-dependent methylotrophic (Methano-
massiliicoccales, Methanomethyliaceae, and Methano-
fastidiosaceae). According to the data on metabarcod-
ing, the largest proportion of detected methanogenic
microorganisms in the sediments of Lake Baikal
belonged to the hydrogenotrophic representatives of
the family Methanoregulaceae (Methanoregula, Meth-
anosphaerula, and uncultured genera), hydrogen-
dependent methylotrophic archaea of the order Meth-
anomassiliicoccales, and acetoclastic methanogens of
the family Methanosaetaceae (genus Methanothrix
(Methanosaeta)). These microorganisms compose the
core of methanogenic communities in the sediments
of freshwater lakes around the world, regardless of
their limnological and hydrochemical characteristics
(Wen et al., 2017). In Baikal, members of these taxa
were found in the zones of methane seeps and mud
volcanoes (Zemskaya et al., 2010; Kadnikov et al.,
2012; Chernitsyna et al., 2016; Lomakina et al., 2018),
as well as in the sediments of the reference regions
(Zemskaya et al., 2018; Zakharova et al., 2018). A large
proportion of archaea of the families Methanoregula-
ceae and Methanosaetaceae may be associated with
their high competitiveness under conditions of low
substrate concentrations, as well as with their ability to
develop stable syntrophic consortia decomposing vol-
atile fatty acids (Borrel et al., 2011). Microorganisms
of the order Methanomassiliicoccales (Thermoplas-
mata) found in the Baikal communities of both the
surface and deep layers utilize a wide range of methyl-
ated substrates, including methanol, methylamines,
and methyl sulfides, the concentrations of which in
freshwater ecosystems were previously considered
insignificant (Conrad and Claus, 2005). Methy-
lotrophic methanogens are commonly found in the
digestive tract of insects and animals, as well as in
hypersaline water bodies. In the latter, methylamines,
which are formed as a result of the decomposition of
osmoprotectants secreted by halophilic proteobacte-
ria, are the main methylated substrates for methy-
lotrophic methanogens (Liu and Whitman, 2008). In
the sediments of freshwater ecosystems, methanol that
is formed during the degradation of pectin and ligno-
cellulose that compose the cell walls of algae and
plants can be the main substrate for them (Sollinger
and Urich, 2019). However, although molecular
markers of the members of this family were wide-
spread in the communities of the Lake Baikal sedi-
ments, they were not detected in methanogenic
enrichment cultures when cultivated in the medium
containing methanol (Bukin et al., 2018). The incon-
sistency of the cultivation conditions may be one of the
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reasons, while another one is the possible use of other
C1-methylated compounds instead of methanol by

Methanomassiliicoccales in Lake Baikal. Their pres-
ence in the upper layers of sediments in the discharge
zones of Lake Baikal can be a result of migration of
these compounds from deep sediments with the f lows
of deep highly mineralized f luids. This is in agreement
with the isotopic characteristics of dissolved biogenic

methane (δ13C1 ≈ –41.0 to –67.3‰; δDC1 = –311 to

–300‰), which are characteristic of this gas formed
mainly via reduction of the methyl groups (Kalmych-
kov et al., 2006; Hachikubo et al., 2010). Considering
the low rates of acetoclastic methanogenesis in the
deep-water zone of the lake, methane generation using
methyl groups of C1-methylated compounds is quite

probable.

MICROORGANISMS INVOLVED 
IN ANAEROBIC OXIDATION OF METHANE

The most obvious difference between biogeochem-
ical processes at the sites of seepage of mineralized
gas-bearing f luids in Lake Baikal and the processes in
oceanic areas is associated with the content of sulfate
ions. In the pore water of most regions studied by us,
the concentration of sulfate ions was insufficient for
the sulfate-dependent AOM (Pimenov et al., 2014). In
this regard, the areas of seepage of sulfate- and sulfide-
containing abyssal f luids were exceptions. These were
Kukuy Canyon and the Malenky mud volcano, in
which the sulfate ion content reached 15 mM. The sul-
fate reduction process was recorded in the sediments
of different areas of Lake Baikal directly below the
layer of oxidized sediments, although its role in the
OM destruction was secondary (Namsaraev and
Zemskaya, 2000; Pimenov et al., 2014), which was
confirmed by a comparison of the integral rates of
methane oxidation and sulfate reduction. Despite
insignificant concentrations of sulfate ion (from 0.05
to 0.16 mM), in most sediments in Lake Baikal, ana-
lyzed profiles of methane concentrations indicated the
occurrence of the AOM process. Comparison of the
integral rates of aerobic and anaerobic methane oxida-
tion in the Lake Baikal sediments showed that their
values were comparable, while in some areas (the
Posolsk Bank methane seep, the Gorevoy Utes (GU)
oil seep, and the Bolshoy mud volcano), AOM was
significantly higher than the rate of methane oxidation
(MO) in the oxic zone. However, no methane-oxidiz-
ing archaea of clusters ANME-1, 2, and 3, which are
typical of marine sediments, were found in the studied
sediments (Zemskaya et al., 2010; Chernitsyna et al.,
2016; Lomakina et al., 2018). Possibly, AOM was car-
ried out in the sediments of Lake Baikal by members
of other taxa, in particular, archaea of the ANME-2d
subcluster and bacteria NC10 (Raghoebarsing et al.,
2006; Haroon et al., 2013). Representatives of the sub-
cluster ANME-2d were originally found together with
members of the bacterial phylum NC10: “Ca. Methy-
lomirabilis oxyfera” in enrichment cultures obtained
from freshwater sediments (Raghoebarsing et al.,
2006). These unique bacteria are considered the first
anaerobic methanotrophs that are able to produce
oxygen from nitrite intracellularly and use it to activate
methane, similar to aerobic methanotrophs (Ettwig
et al., 2010). Archaea of the ANME-2d subcluster and
bacteria of the phylum NC10 are widespread in fresh-
water ecosystems, soils, rice fields, and wastewater
treatment facilities (Raghoebarsing et al., 2006;
Haroon et al., 2013; Fu et al., 2016; Welte et al., 2016;
Timmers et al., 2017). Previously, their participation
in the AOM process was also experimentally con-
firmed during the cultivation of freshwater sediments
(Lakes Chaohu and Taihu, China) and the samples
from wastewater reuse lagoons (Luggage Point, Bris-
bane, Australia) on the medium supplemented with
nitrate and nitrite ions (Hu et al., 2009; Ettwig et al.,
2010; Haroon et al., 2013). We confirmed that the
AOM process via the nitrate-dependent pathway
occurred in the sediments of South Baikal by cultiva-
tion of the natural microbial community from the
Peschanka mud volcano in the medium supplemented
with nitrate ions (Lomakina et al., 2018). The experi-
mental samples were characterized by a decrease in
methane and the formation of microbial consortia
composed of bacteria of the phylum NC10 and
archaea of the ANME-2d subcluster, which were
identified using f luorescent in situ hybridization with
specific probes. Phylogenetic analysis of the 16S
rRNA gene libraries showed the similarity of the Bai-
kal archaea of subcluster ANME-2d to the sequences
from freshwater sediments of an alpine lake, sediments
of Lake Monun, and bioreactors, where AOM pro-
cesses were also recorded. Members of the phylum
NC10 are other participants in the AOM process in the
sediments of Lake Baikal. Sequences of this phylum
were identified in the microbial communities of all
studied sediments, including the Malenky and Kedr
mud volcanoes, as well as the Posolsk Bank and
Krasny Yar methane seeps. Phylogenetically, mem-
bers of this taxon were not completely identical; they
were grouped into four OTUs and showed similarity to
the sequences from the sediments of the lakes Con-
stance and Biwa, as well as to “Ca. Methylomirabilis
sp.” from enrichment cultures involved in nitrite-
dependent AOM. Anammox bacteria, as well as aero-
bic ammonium- and nitrite-oxidizing bacteria, are
known to participate in the chains of trophic interac-
tions with nitrate- and nitrite-dependent microorgan-
isms carrying out AOM (Welte et al., 2016). As a result
of syntrophic interaction in the presence of ammo-
nium in the environment and anammox bacteria or
bacteria of the phylum NC10 and nitrite formed in the
process of nitrate-dependent AOM, the latter is
reduced to gaseous nitrogen (Zhu et al., 2010; Haroon
et al., 2013).

It should be noted that the AOM mechanism and
the number of its participants in the sediments of Lake
MICROBIOLOGY  Vol. 90  No. 3  2021
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Baikal are not fully understood. Even in the areas of
discharge of mineralized f luids, the content of nitrate
ions in pore water did not exceed 0.0096 mM, and
nitrite ions were not detected by the methods used
(Zemskaya et al., 2015a; Pogodaeva et al., 2020). It
can be assumed that the activity of ammonium-oxi-
dizing archaea of the phylum Thaumarchaeota, which
are able to oxidize ammonium to nitrate, compensate
for the lack of concentrations of nitrate ions (Zhu
et al., 2010). In the sediments of Lake Baikal, mem-
bers of this phylum indeed composed a significant
proportion (up to 26%) in the deep sediments of the
areas of gaseous f luid discharge and up to 100% in the
deep sediments of the Gorevoy Utes oil seep (Kad-
nikov et al., 2012; Chernitsyna et al., 2016; Lomakina
et al., 2018). The possible involvement of microorgan-
isms in the processes of nitrate- and nitrite-dependent
AOM in the sediments of Lake Baikal was confirmed
by the presence of marker genes in the total DNA: the
mcrA gene for the archaeal subcluster ANME-2d and
the pmoA gene for the phylum NC10. The amino acid
sequences of the mcrA gene from different areas of
Lake Baikal were identical to the sequences of
“Ca. Methanoperedens sp.” from the sediments of
wastewater treatment plants and bioreactors, while
amino acid sequences of the pmoA gene were identical
to those of uncultured NC10 members from the sedi-
ments of the Lakes Biwa and Constance, as well as
from denitrifying reservoirs.

Members of the phylum Bathyarchaeota should not
be excluded as other possible participants in the meth-
ane cycle in the Lake Baikal sediments. Recent metag-
enomic studies of two genomes of the phylum Ba-
thyarchaeota (formerly Miscellaneous Crenarchaeota
Group) showed the presence of the genes encoding
the methyl-coenzyme M reductase (MCR) complex,
including the mcrA gene (Evans et al., 2015). The
authors did not exclude the involvement of Bathyar-
chaeota not only in the process of methane generation,
but also in the process of AOM via the mechanism of
reverse methanogenesis. The metabolism of archaea
of this phylum in nature, including Lake Baikal sedi-
ments, remains to be determined. According to the
results of high-throughput sequencing, members of
this phylum in the Lake Baikal sediments were
responsible for 28–76% of all analyzed archaeal 16S
rRNA gene sequences in the areas of mud volcanoes
and methane seeps. Moreover, enzymes of methyl-
reducing methanogenesis were found in members of
the phylum Verstraetearchaeota, which indicates their
involvement in methane metabolism (Vanwonter-
ghem et al., 2016). Sequences of the Verstraetearchae-
ota members, which proved to harbor the mcrA genes,
were isolated from a mesophilic methanogenic reactor
and from the sediments of the freshwater Lake Pavin
(France). However, in the sediments of Lake Baikal,
the sequences of this phylum were minor components
in the studied microbial communities.
MICROBIOLOGY  Vol. 90  No. 3  2021
In the publications (Och et al., 2012; Torres et al.,
2014; Aloisi et al., 2019), the involvement of Mn(IV)
and Fe(III) oxides in the AOM process leading to
bicarbonate formation in the sediments of Lake Baikal
was considered. Elevated concentrations of iron ions

in pore water with the  and  contents that are

insufficient for the occurrence of AOM were observed
in the surface sediments (first centimeters) in different
areas of Lake Baikal (Granina et al., 2004; Och et al.,
2012; Zemskaya et al., 2015a). This process was previ-
ously observed in the sediments of Lake Ørn, where
members of ANME-2d were detected in the zones
with a low content of nitrates and sulfates in the pres-
ence of Fe ions (Norgi et al., 2013; Weber et al., 2017).
The microorganisms that are responsible for this pro-
cess have not been reliably identified, although mem-
bers of ANME-2d may also participate in the process
of iron-dependent AOM (Cai et al., 2018). Therefore,
members of the ANME-2d subcluster are presently
considered universal anaerobic methanotrophs, which
use various ions as electron acceptors in AOM and,
thus, play an essential role in methane emission (Shen
et al., 2019).

In the oceanic sediments of cold seeps, increased

flows of  which result from the sulfate-depen-
dent AOM and lead to the widespread deposition of
authigenic carbonates in the form of nodules in sedi-
ments and carbonate crusts, have been observed
(Bohrmann et al., 1998; Luff et al., 2004; Aloisi et al.,
2019). In contrast to marine ecosystems, regions of
formation of authigenic carbonates are not present
throughout Baikal but are locally distributed. In these
areas, small (up to 0.5 cm) inclusions of authigenic
siderite and rhodochrosite are found (Mizandrontsev,
1975; Granina, 2008; Krylov et al., 2018), which may

be a consequence of the low concentration of 
ions in such zones. The absence of authigenic carbon-
ates over a large area of sediments suggests that the
rates of these processes are not high enough to signifi-
cantly shift the equilibrium of dissolved inorganic car-
bon in favor of precipitation of the carbonate minerals.
Finally, the limited deposition of carbonate minerals
in the sediments of cold seeps in Lake Baikal is also
associated with the concentration of dissolved cal-
cium, which is 20 times lower than in the ocean. The
formation of authigenic carbonates requires increased
values of carbonate alkalinity in pore water/fluids, as
well as occurrence of the AOM or methane generation
processes. In the Baikal sediments containing authi-
genic carbonates, an increase in alkalinity was noted.
The concentration of bicarbonate ions in the pore
water was more than 8.19 mM, which is significantly
higher than the values recorded for the sediments of
the reference regions (1.09 mM) (Zemskaya et al.,
2015a; Pogodaeva et al., 2017). Analysis of the 16S
rRNA gene libraries from carbonate-containing sedi-
ments showed the presence of the sequences of
archaea from the ANME-2d subcluster and members
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of other phyla. For instance, Euryarchaeota (up to
99%) predominated in archaeal communities from
oligonite (Fe(Mn, Zn)(CO3)2) collected from the sed-

iments of the Malenky mud volcano, among which
20% of the sequences belonged to the subcluster
ANME-2d and 73% were the sequences of the order
Thermoplasmatales (Lomakina et al., 2018). In the
area where carbonate was identified as siderite
(FeCO3), sequences identified as Bathyarchaeota pre-

vailed (from 33 to 76.6%); the proportion of the mem-
bers of subcluster ANME-2d was approximately 16%
(Lomakina et al., 2020). A high percentage of mem-
bers of the bacterial phyla Chloroflexi and Atribacteria,
which are typical members of marine carbonate sedi-
ments (Yanagawa et al., 2019), should also be noted in
the bacterial communities from the same samples.
The data on the taxonomic composition of the com-
munities make it impossible to unravel the mechanism
of carbonate formation in the Lake Baikal sediments
but can be used for further research in this field.

MICROORGANISMS PARTICIPATING 
IN THE OXIDATION OF OIL 

HYDROCARBONS

Apart from its age, depth, and high diversity of
biota, natural oil seeps are also a unique feature of
Lake Baikal. In addition to Lake Baikal, this phenom-
enon is characteristic of the deep-water rift Lake Tan-
ganyika and a shallow-water Lake Chapala (Simoneit
et al., 2000; Zarate-del Valle et al., 2006). Lake Baikal
is known for two areas of natural oil seeps. One area is
located at the mouth of the River Bolshaya Zele-
novskaya (BZ) and has been known since the end of
the 18th century; the second one is situated near Cape
Gorevoy Utes (GU) (discovered in 2005). In 2005, oil
in the GU area was characterized by an extremely high
content of n-alkanes and was identified as non-biode-
graded paraffinic oil; in the BZ area, it was described
as biodegraded aromatic-naphthenic oil (Kontorovich
et al., 2007). Microbiological studies of the oil seeps in
the area of the BZ river mouth were started in the
1980s by Taliev et al. (1985). In the water and sedi-
ments, the distribution of hydrocarbon-oxidizing
microorganisms capable of assimilating hydrocarbons
of diesel oil, methane oil, and individual hydrocarbons
С3Н8, С4Н10, С5Н12, and С9Н20 was studied (Petrova

and Mamontova, 1985; Taliev et al., 1985).

The discovery of a new area of natural hydrocarbon
seeps in 2005 allowed online monitoring of the phe-
nomena occurring in this basin, as well as in situ mon-
itoring of qualitative and quantitative changes in the
oil composition, structure of microbial communities,
and their adaptive capabilities. In the first years of
research, an increase in the abundance of hydrocar-
bon-oxidizing microorganisms (HCOMs) was noted
in both the water column and sediments. In the zone
of oil slicks formed on the surface of the water column,
the number of cultured HCOMs was 12 times higher
than the values in the water of the reference regions.
Monitoring the abundance of cultured microorgan-
isms that oxidize oil and n-alkanes in the sediments of
GU for 15 years has shown its increase in the first two

years (2005–2007) (up to 25 ± 2.7 × 104 CFU/g)
and a subsequent decrease in 2017–2019 to 9.0 ± 0.1 ×

104 CFU/g (Pavlova et al., 2020). An increase in the
number of hydrocarbon-oxidizing bacteria after a
technogenic oil spill was reported in numerous studies
(King et al., 2015). For instance, a month after the
accident at the Deepwater Horizon oil rig, the
total number of microorganisms was 5.51 ± 0.33 ×

104 cells/mL in the deep-water oil plume in the Gulf

of  Mexico and 2.73 ± 0.33 × 104 cells/mL outside it
(Hazen et al., 2010). High indices of the abundance of

cultured HCOMs (up to 17.0 ± 1.3 × 104 CFU/g) were
recorded in bituminous structures discovered in the
area of GU using inhabited Mir deep-submergence
vehicles in 2008. These structures are formed of paraf-
finic oil bitumen and inhabited by a large number of
diverse benthic organisms. Their food chain is based
on the microorganisms that carry out aerobic and
anaerobic hydrocarbon oxidation (Zemskaya et al.,
2012; Kadnikov et al., 2013; Sitnikova et al., 2017).
Eighty percent of the microbial community colonizing
bituminous structures consisted of the members of the
phylum Proteobacteria, 40% of which belonged to the
uncultured members of Alpha- and Betaproteobacteria.
Archaea were represented by typical acetoclastic and
hydrogenotrophic methanogens of the orders Metha-
nosarcinales, Methanomicrobiales, and Methanobacte-
riales (Kadnikov et al., 2013).

High-throughput sequencing analysis of the
microbial community structure in the sediments from
the GU and BZ areas of oil seeps revealed predomi-
nance of the members of the same phyla as in the areas
with normal sedimentation: Actinobacteria, Cyanobac-
teria, and Proteobacteria (Zemskaya et al., 2018). The
composition of bacterial communities in the BZ and
GU sediments was identical at the level of higher taxa,
apart from members of the phylum Actinobacteria,
which were more diverse in the GU sediments
(Zemskaya et al., 2015a). Among Proteobacteria,
members of the classes Alpha-, Beta-, Gamma-, and
Deltaproteobacteria prevailed; their presence is char-
acteristic of methanogenic hydrocarbon-oxidizing
communities, for instance, in methanogenic oil tail-
ings and hydrocarbon-polluted aquatic ecosystems
and sediments (Johnson et al., 2015).

The most obvious differences were observed in the
composition of archaeal communities. Members of
Thaumarchaeota and Euryarchaeota predominated in
the GU sediment communities, which is typical of the
Baikal sediments of the methane seep and mud vol-
cano areas. In the oxidized layers of the BZ sediment,
members of Crenarchaeota (47%) and Thaumarchae-
ota (53%) were identified among archaea. In reduced
layers, identified sequences belonged to the phyla
MICROBIOLOGY  Vol. 90  No. 3  2021
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Euryarchaeota (52%), Thaumarchaeota (26%), Bath-
yarchaeota (20%), and Crenarchaeota (2%). The phy-
lum Euryarchaeota was represented by hydrogeno-
trophic archaea of the order Methanomicrobiales and
acetoclastic methanogens of the order Methanosarci-
nales, as well as the sequences of the ANME-2d sub-
cluster (Lomakina et al., 2018). A higher diversity of
archaea in the BZ area sediments is most likely associ-
ated with a rather long period of their coexistence with
oil, which serves as an additional carbon source. This
has been previously shown for marine ecosystems in
which persistent oil pollution results in a higher
microbial diversity due to the induced resistance
caused by long-term exposure to hydrocarbons (Jean-
bille et al., 2016). It should be noted that members of
the phyla Bathyarchaeota and Crenarchaeota were
present only in the communities of the BZ area in
which oil was highly biodegraded. Members of the
phylum Bathyarchaeota may be involved in the AOM
process (Evans et al., 2015) and the degradation of
aromatic compounds (Jeanbille et al., 2016). The phy-
lum Crenarchaeota in the sediments of the BZ oil seeps
was represented by uncultured members of the order
Desulfurococcales (class Thermoprotei). Under auto-
trophic conditions, these microorganisms obtain
energy by oxidizing hydrogen using elemental sulfur,
thiosulfate, nitrate, or nitrite as electron acceptors and
CO2 as a carbon source (Huber and Stetter, 2006).

Predominance of members of the phyla Thaumar-
chaeota and Euryarchaeota in the sediments of the GU
oil seeps may be due to a more diverse composition of
the oil, which contains n-alkanes, alkylcyclohexanes,
isoprenoids, PAHs, and other compounds, as well as
to the presence of methane. Members of methano-
genic archaea of the families Methanomicrobiaceae,
Methanosarcinaceae, “Ca. Methanofastidiosa”, and
the order Thermoplasmatales were shown to be capable
of generating methane and its anaerobic oxidation, as
well as of oil degradation in oil-contaminated soils
(Miettinen et al., 2019). Members of the phylum
Thaumarchaeota, which are supposed to have a het-
erotrophic type of metabolism using compounds
obtained from crude oil, may also participate in oil
biodegradation (Mussmann et al., 2011).

Monitoring the composition of Baikal oil in the
area of GU oil seeps for 15 years has indicated oil bio-
degradation (Gorshkov et al., 2020). Aerobic pro-
cesses of oil hydrocarbon oxidation prevail in the oxy-
gen-saturated water column and surface sediments
with high O2 content. Studies of the microorganisms

involved in oil degradation in the anaerobic zone of
the sedimentary layers of Lake Baikal are still at the
initial stage. The first experimental data on the ability
of microbial communities from GU sediments to
degrade oil hydrocarbons under anaerobic conditions
in the presence of various electron acceptors
were obtained. In surface sediments, the conversion of
n-alkanes proceeded most intensively in enrichment
cultures in the medium supplemented with sulfate
MICROBIOLOGY  Vol. 90  No. 3  2021
ions, while in deep sediments, it occurred most effi-

ciently on a medium with bicarbonate ions. In deep

sediments, the microbial community is more focused

on anaerobic oxidation of polycyclic aromatic hydro-

carbons (according to the high level of their biodegra-

dation, up to 46%), regardless of the electron accep-

tors present in the medium. Analysis of the clonal

libraries of the 16S rRNA genes of bacteria and

archaea from enrichment cultures showed the identity

(97–99%) of the sequences to those of uncultured

microorganisms from thermophilic habitats, sedi-

ments of mud volcanoes, and environments polluted

with hydrocarbons. The 16S rRNA gene libraries of

bacteria were dominated by the members of the phyla

Firmicutes, Chloroflexi, Caldiserica (OP5), classes

Delta- and Epsilonproteobacteria (Pavlova et al., 2020).

The phylogenetic diversity of anaerobic microorgan-

isms involved in oil biodegradation is similar in its

composition to that of the microorganisms of the

“microbiome core” of oil reservoirs, in which three

classes of bacteria (Gammaproteobacteria, Clostridia,

and Bacteroidia) and archaea of the class Methanomi-
crobia were most represented. The functioning of

communities in oil reservoirs is provided by syntrophic

interaction of these microorganisms (Sierra-Garcia

et al., 2017; Pannekens et al., 2019). We do not rule out

syntrophic relationships in the microbial communities

of Lake Baikal sediments, since microorganisms

responsible for interdependent sequential reactions in

the general metabolic process were found in all exper-

imental samples.

The ability to degrade hydrocarbons is provided by

the genomes of Baikal microorganisms (Lomakina

et al., 2014; Likhoshvay et al., 2014). Analysis of the

nucleotide sequences of the alk genes encoding

alkane-1-monooxygenase showed that most of the

cultured hydrocarbon-oxidizing microorganisms

(76%) isolated from the water column and sediments

in the areas of natural oil seeps in Lake Baikal con-

tained the alkB genes, which are mostly identical to

the alkB genes previously identified in Rhodococcus
erythropolis (Lomakina et al., 2014). The presence of

the alk genes was confirmed by metagenomic analysis

of the genomes of microorganisms inhabiting the bat-

hypelagic zone of South Baikal (Cabello-Yeves et al.,

2020). A particularly active strain degrading n-alkanes

was the strain Rhodococcus erythropolis 4–08 isolated

from a bituminous structure of Lake Baikal. The

genome of this strain was shown to harbor four types

of the alkB genes encoding alkane-1-monooxygenase

(Likhoshvay et al., 2013, 2014). The growth rate of

Rhodococcus erythropolis increased 2–16 times when

cultured on the medium supplemented with a growth

stimulant, which makes it promising for biotechnolog-

ical purposes (Pavlova et al., 2019a, 2019b).
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CONCLUSIONS

The sediments of Lake Baikal are inhabited by
microorganisms with diverse types of metabolism pro-
viding for their participation in the degradation of a
wide range of substrates. The latter include photosyn-
thesized OM, as well as gaseous and oil hydrocarbons.
The most significant changes in the community com-
position and the succession of the predominant
microbial taxa were observed in the sediments with a
pronounced gradient of physicochemical parameters.
However, the taxa of bacteria and archaea characteris-
tic of freshwater ecosystems were revealed also in these
ecotopes (Newton et al., 2011). Low mineralization of
the environment, as well as the availability of carbon
and energy sources, are necessary for the growth of
microorganisms involved in both the formation of
methane and its anaerobic oxidation via the metabolic
pathways that are characteristic of the microorganisms
from freshwater ecosystems. The diversity of microbial
communities in the Lake Baikal sediments overlaps at
the phylum level and demonstrates an increasing dis-
similarity of microorganisms below the class and
genus levels. In this regard, a broader metagenomic
analysis of genomes and studies of the metabolism of
unique microbial species, including those from the
deep zone of Lake Baikal sediments, are required. The
ancient age of Lake Baikal, its thick sedimentary layer,
and the presence of methane of various origins
(including gas hydrates) provide the basis for further
studies on the role of microorganisms participating in
the cycle of this greenhouse gas, especially during the
period of global climate change.
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