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Abstract—A method has been developed for calculating the exact autonomous kinetic invariants of multistage
linear chemical reactions occurring in a gradientless isothermal reactor via any number of elementary stages
and involving an arbitrary number of reagents within the framework of mass-action law. These invariants are
functions that remain strictly constant throughout the reaction (i.e., are time-independent), although they
depend on the nonequilibrium reagent concentrations measured in two experiments with different initial
conditions (dual experiments). For the dynamic models of linear reactions, one can always find general and
particular analytical solutions expressed explicitly in terms of the initial conditions. The idea of the method
is based on choosing the initial conditions that allow the nonequilibrium reagent concentrations to be
expressed in terms of constant kinetic parameters (stage rate and f low rate constants). An applicability crite-
rion of the method was formulated. The number of different invariants was shown to be equal to the number
of reagents. The relations obtained in this study were used to investigate the relaxation properties of multistage
linear reactions occurring in closed and open isothermal systems. The invariant curves found for these reac-
tions were compared with the concentration curves measured in two nonequilibrium experiments throughout
the transition process. For these reactions, the time dependences of the invariants remained strictly constant,
while the reagent concentrations continuously changed (including nonmonotonously) during the reaction.
The results give new insight into the relaxation of linear chemical reactions and can be used to solve the
inverse problems of chemical kinetics under the conditions of an isothermal perfect-mixing reactor.
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The search for unknown relaxation tendencies of
chemical reactions is a challenge in chemical kinetics
[1–5]. One of the recently discovered new regularities
are time-independent kinetic invariants that retain
their values   throughout the transition process of the
reaction. Exact invariants of linear reversible reactions
involving any number of reagents were also found for
some nonlinear reactions [6–16]. Recently, the invari-
ants of a nonlinear reaction were confirmed experi-
mentally [14]. They were found by the dual-experi-
ments method (DEM) proposed by the American-
Brussels research group (G. Yablonsky, D. Constales,
G. Marin et al. [6–16]) and based on two experiments
with reciprocal (“thermodynamic”) boundary initial
conditions. One of the dual experiments starts when
only the starting material is available, and the other
when only the reaction product is present. This
approach was further developed in [17–20], where the
multi-experiments method (MEM) was described. In
this method, the results of two or more nonequilib-
rium experiments with any physical initial conditions

(not necessarily “thermodynamic”) are used to deter-
mine approximate autonomous invariants (quasi-
invariants) of nonlinear reactions. The quasi-invari-
ants differ from the exact invariants in the fact that
they remain only approximately (not strictly) constant
during the reaction. The accuracy of the quasi-invari-
ants depends on the kinetic parameters of the reaction
and initial conditions. At some values of parameters,
MEM can lose stability, leading to increased calcula-
tion error, which should be taken into account in its
practical applications. Therefore, it is of interest to
search for new approaches to the development of
methods for determining the exact invariants of vari-
ous classes of reactions. A new method for calculating
the exact kinetic invariants of linear reactions pro-
ceeding through any number of elementary stages and
involving an arbitrary number of starting materials and
reaction products is described below [6–16].

THEORETICAL

Let us consider a linear chemical reaction involving
n reagents Аj and proceeding via s elementary stages of
the form

Abbreviations: DEM—dual-experiments method, MEM—multi-
experiments method, ODE—ordinary differential equations,
CE—characteristic equation, CL—conservation law, mol. fr.—
mole fraction, ICs—initial conditions.
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(1)
where a±ij ≥ 0, Σa±ij = 1 are the stoichiometric coeffi-
cients of the substances Аj at the ith stage. In closed
systems, each stage of the linear reaction should be
linear; i.e., the stepwise conservation law (CL) should
be valid:

(2)
In open systems, the linear reactions can include

nonlinear stages involving other reagents, whose
changes can be neglected (Bodenstein–Semenov
quasi-steady state hypothesis [1, 2]). The dynamics of
reactions (1), (2) in a gradientless isothermal reactor is
described in terms of the mass-action law by a set of
ordinary linear differential equations (ODEs)

(3)
where Аj are the concentrations of reagents Аj (in mole

fractions);  and  are the rates
of direct and reverse stages linear in Аj (in 1/s), respec-
tively; k−i are the rate constants of stages (in 1/s); and
q0 and q are the initial and current f low rates, respec-
tively (in 1/s). The initial conditions are

(4)
The linear reactions have only one stable equilib-

rium Aj∞ [21], which is determined from the set of lin-
ear algebraic equations

(5)

and can be recorded in explicit form as

(6)
where Δ ≠ 0 and Δj are the main and auxiliary deter-
miners, respectively [22] of system (5). In closed sys-
tems, the CLs of substances are always valid:

(7)
In open systems, the CLs can be recorded in differen-
tial form:

(8)
These CLs allow the order of system (3) be reduced by
unity and should be taken into account when choosing
ICs for experiments. The general solution of system (3) is
determined by the eigenvalues λ1, λ2, …, λ1n—the roots
of the characteristic equation

(9)
where ϕ = ϕ(ki, k−i, A0j) are the kinetic parameters
(constants). If all eigenvalues are real and different,
the general solution of (8) is recorded as [22]

(10)
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where Cjk = Сjk(ki, k−i, A0j) are the constants that
depend on the kinetic parameters and ICs, and Сj =
Сj(ki, k−i) are the constants that depend only on the
kinetic parameters. If there are complex-conjugate
pairs λ = m ± in, i2 = −1 among the eigenvalues, the
corresponding pairs of the terms in (10) will also be
complex-conjugate Cjkexp(m + in)t + Cjkexp(m − in)t
(with the same coefficients) and can be replaced by the
real equations [22]

(11)

where P, Q, or R, α are the new real integration con-
stants. The particular case of multiple eigenvalues is
not considered here.

Let us use a method similar to the one described in
[17–20] for solutions (10) and (11), slightly modifying
it. In its original version, this method permits the use
of any two different physical ICs. Modification con-
sists in a “stricter” choice of ICs, which should satisfy
the following sufficient conditions (criterion) of appli-
cability of the method:

(12)
These conditions express the requirement that all
coefficients at exponentials in (10) and (11) be zero,
except one coefficient with the index k0, for at least
one reagent with the index j0 at the physical values of
ICs. They are represented by a system of (n − 1) linear
equations with n unknowns, which has an infinite
number of solutions. If there is at least one physical
solution among these solutions, then criterion (12) is
valid, and solutions (10) and (11) for two different ICs
can be represented as

(13)

If there are complex-conjugate eigenvalues, the corre-
sponding pairs of terms in (13) have the form (11). Let
us find the only t-dependent exponential from the first
equation (13) and calculate, taking into account (9),
the remaining t-dependent exponentials:

(14)

where Aj1 > Сj. Substituting (14) in the second equa-
tion (13), we obtain

(15)
or, in normalized form,

(16)

The left parts of (15) and (16) are independent of time;
they depend only on the concentrations of one of the
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reagents, kinetic parameters, and ICs of reactions; i.e.,
these are exact autonomous invariants, which are basi-
cally nonlinear with respect to the concentrations of
any of the reagents measured in two nonequilibrium
experiments. If the conditions Aj1 > Сj are satisfied,
they take real values, are physical, and are observed in
the form of horizontal lines on the plots.

Thus, in closed and open systems, analytical
expressions for the invariants of linear chemical reac-
tions (15) and (16) occurring in a gradientless isother-
mal reactor can be represented, within the framework
of the mass-action law, as the sum of reagent concen-
trations (to the powers of the rate constants of stages)
found from two nonequilibrium concentrations with
any given pair of initial conditions that satisfy the
applicability criterion (12) of the method. The maxi-
mum number of these invariants for the chosen pair of
initial conditions equals the number of reagents. If
another pair of initial conditions is chosen, we can
construct the same number of invariants, etc. For their
experimental verification, the data of the correspond-
ing two experiments should be substituted into the left
part of any invariant expression (15) and (16) and
compared with the constants in the right parts of these
relations. The mechanism of the chemical reaction is
acceptable if these equalities are satisfied, or inaccept-
able otherwise, which may be useful in solving the
inverse problems.

RESULTS AND DISCUSSION
Example 1. Suppose the reaction A = C occurs by

the sequential scheme
(1.1)

The dynamics of these reactions in the closed system
is described by ODEs (3):

(1.2)

The equilibrium coordinates (5) and (6) for this sys-
tem are A∞ = k−1k−2/Δ, B∞ = k1k−2/Δ, C∞ = k1k2/Δ,
Δ = k1k2 + k1k−2 + k−1k−2, and CL (7) is recorded as

(1.3)
Let us have B expressed as B = 1 − A − C. Substituting
it into (1.2), we obtain two ODEs in A and C; i.e., the
order of system (3) is reduced by unity:

(1.4)

The general solution (1.4) is determined by the roots of
CE (9) recorded as

(1.5)
where ϕ1 = k1 + k−1 + k2 + k−2, ϕ2 = k1k2 + k1k−2 +
k−1k−2. An analysis showed that Eq. (1.5) has only real
roots. Suppose k1 = 1, k−1 = 1, k2 = 1, k−1 = 1; then
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2
1 2 0,λ + ϕ λ + ϕ =
ϕ1 = 4, ϕ2 = 3 and λ1 = −1, λ2 = −3, and solutions (10)
of system (1.4) are recorded as

(1.6)

(1.7)

According to (1.6), criterion (12) of applicability of the
method to any reagent A (j0 = 1) or С (j0 = 2) is
recorded as A0 = C0 for the first (k = 1) exponential
and as A0 + C0 = 2/3 for the second (k = 2) one. Sup-
pose, e.g., the second condition is satisfied taking into
account CL (1.3). This is one linear equation with two
unknowns, which has an infinite number of solutions.
One of the physical solutions with allowance for CL
(1.3) is A01 = 0, B01 = 1/3, C01 = 2/3. The second IC is
chosen arbitrary: A02 = 2/3, B02 = 0, C02 = 1/3, but also
taking into account the CL. For these ICs, Eqs. (13)
take the form

(1.8)

(1.9)

According to (1.8) and (1.9), for reagents A and С Eqs.
(14) are recorded as

(1.10)

(1.11)

Substituting (1.10) into the second equation (1.8), we
find the exact А invariant:

(1.12)

or, in normalized form,

(1.13)

Substituting (1.11) into the second equation (1.9), we
find the exact C invariant:

(1.14)

or, in normalized form,

(1.15)

Invariants (1.13) and (1.15) and solutions of two Cau-
chy problems are shown in Figs. 1а and 1b.

According to Figs. 1а and 1b, the dependences
KA(t) and KC(t) are strictly horizontal lines; i.e., these
are time-independent exact invariants.

= − −
+ + − − +

0 0

0 0

exp  2
2 2 1 3 exp 3 1

( ) ( )
( ) ) ,( 3

A A C t
A C t

= − − +
+ + − − +

0 0

0 0

 ( ) (exp 2
2 2 1 3

)
( )ex 3 )p 1 3( .

C C A t
A C t

1

2

1 3 exp 1 3,
1 6 e

( )
( )xp 1 6 exp 1 3,)3(

A t
A t t

= − − +
= − + − +

1

2

1 3 exp 1 3,
1 6 e

( )
( )xp 1 6 exp 1 3.)3(

C t
C t t

= − +
= − − + − +

1
3 3

1

exp   1 3 ,

exp 3

( )

( ) ( )ex 1 ,)p ( 3

t A

t t A

− = −
− = − = −

1
3 3

1

exp 3 1,

ex

( )

( )p 3 exp 3 .) 1( ( )

t C

t t C

− = −
− = − −=

3
2 1 1( ) ( )6 1 3 1 3( )  2,AI t A A A≡ − − − − =

3
2 1 1( ) ( )3 1 3 2 1 3( 2  1.)AK t A A A≡ − − − − =

3
2 1 16 3 1( ) ( ) (3 1  2) ,СI t C C C≡ + − − − =

≡ + − − − =3
2 1 13  3 1( ) 2 3 1 2  1( ) ( .)СK t C C C
KINETICS AND CATALYSIS  Vol. 60  No. 6  2019



AUTONOMOUS KINETIC INVARIANTS OF LINEAR CHEMICAL REACTIONS 779

Fig. 1. (а) Solutions of two Cauchy problems and exact A invariant for reaction (1.1) at k1 = 1, k−1 = 1, k2 = 1, k−1 = 1, A01 = 0,
B01 = 1/3, C01 = 2/3, A02 = 2/3, B02 = 0, C02 = 1/3: (1) A1(t), (2) A2(t), and (3) KA(t). (b) Solutions of two Cauchy problems and
C invariant for reaction (1.1) at k1 = 1, k−1 = 1, k2 = 1, k−1 = 1, A01 = 0, B01 = 1/3, C01 = 2/3, A02 = 2/3, B02 = 0, C02 = 1/3:
(1) C1(t), (2) C2(t), and (3) KC(t).
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If the same reaction A = С occurs by the parallel
scheme

(1.16)

its dynamics is described, taking into account CL
(1.3), by the ODE

(1.17)

The coefficients of CE (9) take the form ϕ1 = k1 + k−1 +
2k2 + k−2, ϕ2 = k1k2 + k1k−2 + 2k2k−2 + k−1k−2 + k2

2,
from which we obtain, at the same values of constants,
ϕ1 = 5, ϕ2 = 6; that is, λ1 = −2, λ2 = −3; Eqs. (13) for
reagent A are recorded as

(1.18)

Taking into account (15) and (16) for the same pair of
ICs A01 = 0, B01 = 1/3, C01 = 2/3 and A02 = 2/3, B02 = 0,
C02 = 1/3, we obtain the non-normalized and normal-
ized invariants from (1.18):

(1.19)

(1.20)

It is easy to verify that the plots of these dependences
are also strictly horizontal lines, i.e., are exact invari-
ants.

Example 2. Let us consider the linear three-stage
scheme of reaction A = D

(2.1)
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The dynamics of reaction (2.1) is described by the
ODE

(2.2)

The coordinates of equilibrium (5) and (6) are A∞ =
k−1k−2k−3/Δ, B∞ = k1k−2k−3/Δ, C∞ = k1k2k−3/Δ, D∞ =
k1k2k3/Δ, where Δ = k1k2k3 + k1k−2k−3 + k1k2k−3 +
k−1k−2k−3, and CL (7) takes the form

(2.3)

Recording B from this and substituting it into (2.2), we
obtain a system of third-order ODEs

(2.4)

where B = 1 − A − C − D. The characteristic equation
(9) for this system takes the form

(2.5)
where ϕ1 = k1 + k−1 + k2 + k−2 + k3 + k−3, ϕ2 = (k1 +
k−1)(k2 + k−2 + k3 + k−3) − k2k−1 − k3(k−3−k2) + k−3(k2 +
k−2 + k3), ϕ3 = −k1k−3k2 − k1k − 2k−3 − k1k2k3 −
k−1k−2k−3. Suppose k1 = 1, k−1 = 1, k2 = 1, k−1 = 1,
k3 = 1, k−3 = 1; then λ1 = −2, λ2,3 = −2 ± 21/2 =
(−0.5858, −3.4142), and the A solutions of system
(2.2) for any ICs are recorded as

(2.6)

where С120 = α12A0 + β12B0 + γ12C0 + θ12, С130 = α13A0 +
β13B0 + γ13C0 + θ13, α12 = −3730 904090310553, β12 =
5276295164 430 438, γ12 = 9 007199254740 991, θ12 =
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Fig. 2. Solutions of Cauchy problems and A invariant for
reaction (2.1) at k1 = 1, k−1 = 1, k2 = 1, k−1 = 1, k3 = 1,
k−3 = 1, A01 = 0, B01 = 1/2, C01 = 0, D01 = 1/2, A02 = 1,
B02 = 0, C02 = 0, D02 = 0: (1) A1(t), (2) A2(t), and (3) KA(t).
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−2638147582215219, α13 = 5436325649948134,
β13 = 7688125463633382, γ13 = 2251799813685248,
θ13 = −3844062731816691 (exact values are given).
The applicability criterion of method (12) for reagent
А for the second and third exponentials gives a system
of two linear equations with three unknown ICs:

(2.7)

This system has infinitely many solutions. Let us
choose one physical solution from them, for example,
А01 = 0, B01 = 1/2, C01 = 0. The second IC is taken any:
A02 = 1, B02 = 0, C02 = 0. Solutions (2.6) for these two
ICs take the form

(2.8)

(2.9)

where С120,2 = (21/2 +
1)1592262918131443/9007199254740992, С130,2 =
(21/2 − 1)1592262918131443/9007199254740992.
From (2.8) it follows that

(2.10)

Substituting (2.10) into (2.9), we find the exact А
invariant of system (2.2):

(2.11)

or, in normalized from,

(2.12)

Invariant (2.12) and the solutions of two Cauchy prob-
lems are shown in Fig. 2. The solutions of system (2.2)
for other reagents are recorded similarly to (2.6):

(2.13)

(2.14)

where С220 = α22A0 + β22B0 + γ22C0 + θ22, С230 = α23A0 +
β23B0 + γ23C0 + θ23, С320 = α32A0 + β32B0 + γ32C0 + θ32,
С330 = α33A0 + β33B0 + γ33C0 + θ33, etc. Using these
solutions, we find the B and C invariants for reagents
B and C, respectively.

Example 3. Let us consider the reaction occurring
by the linear cyclic scheme

(3.1)
This reaction is described by the ODEs

(3.2)
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1 2 2 3 3 4 4 1' , ' , ' , ' ,x r r y r r q r r z r r= − = − = − = −
where x ≡ [B], y ≡ [C], q ≡ [D], and z ≡ [A] are the reagent
concentrations; r1 = k1z − k−1x, r2 = k2x − k−2y, r3 =
k3y − k−3q, r4 = k4q − k−4z, and CL takes the form

(3.3)

Suppose k1 = 1, k2 = 2, k3 = 3, k4 = 4, k−1 = 0.5, k−2 = 0.3,
k−3 = 0.3, k−4 = 1. Then λ1 = −6.2002 (real), and λ2,3 =
−2.9499 ± 1.4520i (complex-conjugate); the x solu-
tions are recorded, taking into account (11), as

(3.4)

where С110 ≈ 0.1587x0 − 0.1081y0 + 0.2123q0 − 0.0598,
С120 ≈ 0.8413x0 + 0.1081y0 − 0.2123q0 − 0.1398, С130 ≈
0.0237x0 + 0.7241y0 + 0.2135q0 − 0.1492. The applica-
bility criterion (12) for x (С120 = С130 = 0) is satisfied,
e.g., at x01 = 0.1403, y01 = 0.2015, q01 = 0, z01 = 1 − x0 −
y0 − q0. The second IC is chosen arbitrary: x02 = 0,
y02 = 0, q02 = 0, z02 = 1, but taking into account CL
(3.3). Solutions (3.4) for these two ICs are recorded as

(3.5)

(3.6)

where λ1 = −6.2002, m = Re(λ2,3) = −2.9499, n =
Im(λ2,3) = 1.452, С110,1 ≈ −0.0593, С110,2 ≈ −0.0598,
С120,2 ≈ −0.1492, С130,2 ≈ −0.1398, С1 = 2676/13405 ≈
0.1996.

From (3.5) we obtain

(3.7)
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Fig. 3. Solutions of Cauchy problems and x invariant for
reaction (2.1) at k1 = 1, k2 = 2, k3 = 3, k4 = 4, k−1 = 0.5,
k−2 = 0.3, k−3 = 0.3, k−4 = 1, x01 = 0.1403, y01 = 0.2015,
q01 = 0, z01 = 1 − x0 − y0 − q0, x02 = 0, y02 = 0, q02 = 0,
z02 = 1: (1) x1(t), (2) x2(t), and (3) Kх(t).
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Substituting (3.7) into (3.6), we find the exact x invari-
ant of system (3.2), (3.3):

(3.8)

or, in normalized form,

(3.9)

Invariant (3.9) and solutions of two Cauchy problems
are shown in Fig. 3.

Solutions (3.4) for other reagents are recorded sim-
ilarly and give exact y, q, and z invariants for the corre-
sponding reagents.

− −≡
+ =

2 110 _ 2 1 120 _ 2

130 _ 2 2 1

cos
sin ,

(
)

xI x С E С nt
С nt E С

−
− +

≡
=

2 110 _ 2 1  1

120 _ 2 130 _ 2 2 1cos si 1) .( n
xK x С E С

С nt С nt E С
KINETICS AND CATALYSIS  Vol. 60  No. 6  2019

Table 1. Concentrations of reagent А in the reaction A = С
according to the data of two experiments with ICs*

*A01 = 0, B01 = 1/3, C01 = 2/3; A02 = 2/3, B02 = 0, C02 = 1/3.

t, s
А1exp А2exp K1 K2

mol. fr.

0 0 0.67 1.0100 1.0050
1 0.10 0.55 1.1285 0.9750
2 0.15 0.50 1.1418 0.9750
3 0.20 0.37 0.8780 0.8550
4 0.25 0.35 0.9171 0.9000
5 0.30 0.33 0.9395 0.9450
6 0.33 0.33 0.9850 0.9900
7 0.33 0.33 0.9850 0.9900

Kav 0.9981 0.9543
Ktheor 1 1
Example 4. Let us consider one of the possible
applications of invariants for solving the inverse prob-
lems. Let us compare two alternative linear schemes
(1.1) and (1.16) for the reaction А = С. Suppose two
sets of data A1exp(t) and A2exp(t) with two different ICs
were obtained as a result of experiments. Invariant
expressions K1(t) and K2(t) for them are calculated
using expressions (1.13) and (1.20) corresponding to
these schemes (Table 1). An analysis showed that these
experimental data including the experimental errors
agree equally well with both possible reaction
schemes, namely, with the sequential and parallel
schemes. However, the average calculated value of the
invariants Kav is closer to the theoretical values Ktheor
for the sequential scheme, due to which it is consid-
ered more probable.

CONCLUSIONS

The method for determining the autonomous
kinetic invariants of multistage linear chemical reac-
tions proposed in this study allows us to find exact
analytical expressions that relate the nonequilibrium
values   of reagent concentrations measured in two
experiments with different initial conditions (not nec-
essarily “thermodynamic”), but remain strictly con-
stant throughout the entire transition process in a gra-
dientless isothermal reactor. This method is an alter-
native approach to the search for and detection of
analytical expressions for nonequilibrium time invari-
ants of chemical reactions, first proposed by the
American-Brussels school of kinetics [6–16]. In these
studies, each reaction mechanism is characterized by
one invariant in the form of the concentration ratios of
all reagents found in two experiments with reciprocal
(“thermodynamic”) initial conditions.

The distinctions of our method are as follows:

1. Each reaction mechanism is characterized by a
set of invariants (their number equals the number of
reagents for each pair of initial conditions).

2. The invariants are represented as the sum of the
concentrations of only one (any) reagent measured in
two experiments with any nonequilibrium (not neces-
sarily “thermodynamic”) initial conditions.

3. The invariants are applicable to both closed and
open systems.

These invariants can be used as new means for
identification of the mechanisms of chemical reac-
tions carried out using relaxation experiments. The
method can also be used for nonlinear reactions under
quasi-steady state conditions, and also for some non-
linear reactions with three or more reagents that allow
exact analytical solutions.
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