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MIXED-LIGAND CHLORIDE COMPLEX  

OF Co(II) WITH E-2-(((4-IODOPHENYL)IMINO)METHYL) 

PHENOL: CRYSTAL STRUCTURE AND FEATURES  

OF HALOGEN BONDING IN A SOLID 
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Neutral complex [L2CoCl2] is obtained by the reaction of cobalt(II) chloride with E-(((4-

iodophenyl)imino)methyl)phenol (L), and its structure is studied by single crystal X-ray diffraction. The 

structure contains I⋯Cl halogen bonds whose energies are estimated by quantum chemical calculations. 
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INTRODUCTION 

A halogen bond (XB) is a special type of non-covalent interactions in which halogen atoms (usually iodine) play  

an unusual role of an electrophile [1-3]. This phenomenon as well as the other “atypical” bonding modes (for example, 

chalcogen bonding [4-10]) has been actively studied for at least the previous decade [11-17]. This is due to both purely 

fundamental interest in the development of supramolecular chemistry in general and possible applications of this effect in 

materials science. 

One of general tasks in the research area has been repeatedly noted–the search for new building blocks capable of 

forming XBs. Perfluorinated iodo- and bromoarenes [18-23], di- and polyhalides [24-28], hypervalent iodine compounds [29-

34], etc. can be noted among the most frequently occurring objects. However, although Schiff bases represent a vast class of 

compounds widely used in coordination chemistry as ligands [35-44] and provide a variety of synthetic routes to introduce 

halogen atoms available for the XB formation, they are rarely considered from this point of view. 

It is well known that in [L2M
IIX2]-type complexes, where X = halide, L = halogenated pyridine, the formation of 

strong XBs is the rule rather than the exception [45-51]. It is logical to assume that the complexes with Schiff bases 

containing a sterically available iodarene substituent can exhibit similar behavior. To test this hypothesis, we synthesized  

E-(((4-iodophenyl)imino)methyl)phenol (L) that was reacted with cobalt dichloride to give neutral complex [L2CoCl2] (1), 

and its structure was studied by single crystal X-ray diffraction (XRD). In the structure of 1 there are indeed I⋯Cl XBs the 

energies of which were estimated by quantum chemical calculations. 
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TABLE 1. Crystallographic Characteristics and Details of the Diffraction Experiment for the Crystal of 1 

Parameter 1 

Chemical formula C26H20Cl2CoI2N2O2 
M 776.07 

Crystal system Triclinic 
Space group 1P  

a, b, c, Å 7.9849(2),  12.6574(4),  13.3733(3) 

α, β, γ, deg 97.138(2),  95.681(2),  93.246(2) 

V, Å3 1331.30(6) 
Z 2 

μ, mm–1 3.19 

Reflection index ranges h = –10→9,  k = –16→14,  l = –17→14 

Reflections: measured / independent / with I > 2σ(I) 10148 / 5809 / 4673 

R(F2 > 2σ(F2)),  wR(F2),  S 0.033,  0.065,  1.03 

Δρmin / Δρmax, e/Å3 0.70 / –0.82 
 

EXPERIMENTAL 

The chemically pure grade reagents (or their analogues) were purchased from commercial sources and used without 

further purification. L was obtained from salicylic aldehyde and 4-iodoaniline by the procedure [52]. 

Synthesis of 1. L (50 mg, 0.155 mmol) and CoCl2⋅6H2O (18 mg, 0.078 mmol) were dissolved in 7 mL of 

acetonitrile with stirring. Gradual evaporation of the solvent results in the formation of blue-green crystals of 1. Yield: 79%. 

Single crystal XRD. The structure of complex 1 was determined following the standard procedure on an Agilent 

Xcalibur diffractometer with an area AtlasS2 detector (graphite monochromator, λ(MoKα) = 0.71073 Å, ω-scanning). 

Integration was performed, absorption corrections were applied, and unit cell parameters were determined using the 

CrysAlisPro software. The structure was solved using SHELXT [53] and refined by the full-matrix least squares method 

(LSM) in the anisotropic approximation for non-hydrogen atoms by the SHELXL 2017\1 algorithm [54] in the ShelXle 

program [55]. The details are given in Table 1. Atomic coordinates and other parameters of single crystal XRD experiments 

have been deposited with the Cambridge Structural Database under No. 2329207; deposit@ccdc.cam.ac.uk or 

http://www.ccdc.cam.ac.uk/data_request/cif). 

RESULTS AND DISCUSSION 

Although L (Fig. 1) can act as a N,O-donor chelate ligand, in the case of 1 there is monodentate coordination 

through oxygen atoms of hydroxyl groups which remain protonated. Co(II) has a tetrahedral coordination environment 

(Fig. 2). The Co–O and Co–Cl distances are 1.942-1.945 Å and 2.236-2.287 Å respectively. 

As already mentioned, a distinctive feature of the structure of 1 is a pronounced XB between chloride ligands and 

iodine atoms in L. The respective distances are 3.337 Å, which is significantly less than the sum of the corresponding Bondi 

Van der Waals radii (3.73 Å). Due to the interactions of this type, neutral [L2CoCl2] moieties are organized into infinite 1D 

supramolecular chains (Fig. 3). 

In order to understand the nature and estimate the energy of non-covalent I⋯Cl interactions in the crystal of 1 (these 

short contacts can be classified as typical XBs [3]), we performed quantum chemical calculations within density functional 

theory (ωB97XD/DZP-DKH) [56, 57] using the Gaussian09 software and the topological analysis of the electron density 

distribution by the QTAIM method [58] using the Multiwfn program [59] (version 3.7). A supramolecular dimeric cluster  
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Fig. 4. Visualization of I⋯Cl XBs in the crystal of 1 within the formalism of the non-covalent 
interaction analysis in the model supramolecular associate (NCI analysis [60]). 

 

quite typical of such supramolecular contacts involving halogen atoms. The ratio of the potential energy density and the 

Lagrangian of the kinetic energy (3, –1) in the bond critical point corresponding to non-covalent I⋯Cl interactions in 1 

indicates that the fraction of the covalent component is not significant in these supramolecular contacts. 
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