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Composition, structure, energy parameters, and existence regions of hydrate complexes formed in the 

HClO4–H2O system are studied by IR spectroscopy and quantum chemical methods. Three concentration-

structural regions are determined. The HClO4–H2O solutions diluted to the 1:13.3 molar ratio of 

components contain 
4

ClO
−  and 

5 2
H O

+  solvate-separated ions, each hydrated by four water molecules. More 

concentrated solutions (1:13.3-1:5) contain hydrated ion pairs 
4 5 2

ClO H O
− +

⋅  that are contact ion pairs if the 

[HClO4]:[H2O] ratio falls within the region 1:9-1:5. As the acid concentration increases further up to the 

transition of the HClO4–H2O system into the solid phase, pair complexes are formed. The structure of the 

latter is formed by a cycle of two contact ion pairs 
4 5 2

ClO H O
− +

⋅  connected by two H-bonds. The solid 

phase consists of interacting polymer chains formed by 
4 5 2

ClO H O
− +

⋅  and 
4 3

ClO H O
− +

⋅  ion pairs. 
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INTRODUCTION 

In aqueous perchlorate solutions, 
4

ClO
−  anions undergo negative hydration (according to the terminology by 

Samoilov [1]), i.e. water molecules in the anion's hydration shell form H-bonds with its oxygen atoms, and the bonds are 

weaker than those between water molecules in the pure solvent. The IR spectra of such solutions contain an intense band 

caused by vibrations of those OH bonds of water molecules that interact with anions. The maximum of the band is at 

~3500 cm–1 [2] (2630 cm–1 in D2O solutions [3]). According to the melting diagram [4], NaClO4 aqueous solutions contain 

NaClO4⋅6H2O complexes in a wide range of component concentrations, while significant excess of water leads to complete 

dissociation of the salt into ions and formation of 
4

ClO
−  tetrahydrate anions [2] and Na+ hexahydrate cations [5]. 

In our previous work (JSC, 2023, 112758), we established the equilibrium composition of the NaClO4–H2O system, 

determined the structure of NaClO4⋅6H2O complexes, and quantitatively explained changes in the IR spectra in the regions of 

bending and stretching vibrations of water molecules and the overtone at 6900 cm–1. It was shown that only complexes with  
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the 1:6 composition can participate in some stages of acid catalyzed hydrolysis of esters by enhancing the nucleophilic 

assistance and thereby increasing the reaction rate [6, 7]. 

According to the melting diagram, the HClO4–H2O system undergoes numerous structural changes manifested as  

a number of maxima corresponding to crystal hydrates with compositions 1:1 (49.9 °C), 1:2 (–20.65 °C), 1:2.5 (–32.1 °C), 

1:3 (–40.2 °C), 1:3.5 (–45.6 °C), 1:4 (–58.0 °C), where digits in parentheses indicate melting points of the complexes [8]. The 

data reported in [8] were used in the calculations of the HClO4–H2O system. 

The IR spectra of the HClO4–H2O system were analyzed and interpreted using a comprehensive experimental and 

computational approach based on the regularities characterizing the formation of hydrogen-bonded complexes in solutions 

[9]. This approach was earlier successfully utilized to study intercomponent interactions in various liquid acid-base systems 

[10-15]. According to these regularities, each molecular complex in the solutions is the most stable one in the series of 

isomers, has a cyclic or polycyclic structure, contains unstrained H-bonds, and has the most dense molecular packing among 

all complexes with similar compositions. As the solution concentration changes, the structure of each next complex is formed 

from the structure of the previous one with minimal energy costs and structural transformations. The solution with the highest 

content of complexes of the same type also contains a small number of complexes with previous and subsequent 

compositions. 

The purpose of the present work is to determine the equilibrium composition of the HClO4–H2O system and to 

establish the structure of the hydrate complexes formed in the system. To this aim, IR spectra of aqueous HClO4 solutions 

were recorded and analyzed, and quantum chemical calculations of perchloric acid hydrates were conducted. 

EXPERIMENTAL 

In the experiments, perchloric acid (reagent-grade) was used. Aqueous HCl solutions were prepared by saturating 

distilled water with gaseous HCl. The concentration of initial aqueous HClO4 and HCl solutions was determined by 

alkalimetric titration. Solutions with lower acid concentrations were prepared by weight dilution. 

The IR spectra were recorded at 30 °C by the method of multiple frustrated total internal reflection (MFTIR) [16] on 

an attachment with a Ge working element providing a radiation incidence angle of 30°. The effective thickness of the 

absorbing layer at a frequency 2000 cm–1 was 3.35 µm. The spectra were measured in the 1300-4000 cm–1 frequency range at 

the HClO4 concentrations of 0-8.69 mol/L ([H2O]:[HClO4] = 3.89) and HCl concentrations of 0-11.65 mol/L 

([H2O]:[HCl] = 3.59). The band absorbances (D) were determined from the baselines with an accuracy of 5-7%. The optical 

density of continuous absorption was measured relative to the absorbance of the empty cuvette. 

COMPUTATIONAL DETAILS 

Total energies and optimal configurations of HClO4 molecules, HClO4⋅nH2O (n = 1-9), 2HClO4⋅nH2O (n = 2-12) 

hydrate complexes, and the polymer chain fragment (HClO4)8⋅(H2O)8 were calculated by the density functional theory 

method (B3LYP/6-31++G(d,p)) using the Gaussian09 program [17]. The structure of each HClO4⋅nH2O (n = 1-9) hydration 

complex was determined by considering all those possible relative arrangements of their molecules, which are compatible 

with the laws determining the formation of H-bonded complexes in solutions [9], and then choosing the most stable one. The 

paired complexes were calculated in the assumption that each of them is formed by two HClO4⋅nH2O complexes or by 

HClO4⋅nH2O and HClO4⋅(n+1)H2O complexes. The analysis of stationary points on the potential energy surfaces of the 

studied systems showed that their optimal configurations correspond to energy minima (all elements of the Hessian matrices 

are positive). 

When estimating formation energies (ΔE) of hydrate complexes and polymer chain fragment, their total electronic 

energies were used under the assumption that a negligibly small restructuring energy is required for a molecule as it is 

incorporated into an H-bonded complex of any composition and structure. Therefore, the formation energy of each hydrate 
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was calculated by subtracting the energies of its molecules from the total hydrate energy. Similarly, when estimating the 

formation energy of the 2HClO4⋅nH2O paired complex (ΔEp) from two complexes, each containing one HClO4 molecule, 

their total energies were subtracted from that of the paired complex. 

Hydrogen bonds in the figures with optimized geometries of the complexes and fragments of the polymer structure 

satisfy the following conditions: bond lengths < 3 Å, and their number and directions correspond to those of the lone pairs of 

oxygen atoms. 

RESULTS AND DISCUSSION 

Computation results. According to the melting diagram, complexes with stoichiometric compositions 1:2.5 and 

1:3.5 are formed in the HClO4–H2O system [8]. We assumed that these are stable paired complexes obtained due to the 

combination of complexes HClO4⋅nH2O and HClO4⋅(n+1)H2O (n = 2, 3). Complexes with close compositions are similarly 

formed due to the combination of two complexes HClO4⋅nH2O (n = 2-4). This assumption is supported by the fact that the 

transition from the largest of these paired complexes (2HClO4⋅8H2O) to the HClO4⋅5H2O complex, containing one HClO4 

molecule, proceeds through minimal structural changes and energy costs, in full agreement with the laws discussed in 

[9, 10, 12-15]. The fact that the HClO4–H2O system (in contrast to most of the earlier studied systems containing one paired 

complex with the composition 2:2 [9, 12-15]) has a range of concentrations where various paired complexes are formed may 

be explained by the presence of four H-bond forming oxygen atoms in the HClO4 molecule. 

The equilibrium composition of the HClO4–H2O system was determined by calculating two series of H-bonded 

complexes, HClO4⋅nH2O (n = 1-9) and 2HClO4⋅nH2O (n = 2-12), while structural and energetic parameters of polymer chains 

in the solid phase were studied by calculating the 8HClO4⋅8H2O fragment. Table 1 lists total energies (E) and formation 

energies (ΔE) of these complexes, as well as the formation energy (ΔEp) for each of the studied paired complexes composed 

of two complexes, each containing one HClO4 molecule. 

Fig. 1 and 2 show optimized geometries of the studied hydrates. The first figure shows three complexes with a 1:1 

stoichiometric ratio of molecules and complexes containing one molecule of the  HClO4⋅nH2O acid (n = 2-9); the second 

figure shows paired complexes, except for the 2HClO4⋅2H2O heterotetramer. 

Structural and energy parameters of complexes HClO4⋅nH2O (n = 1-9). As a result of optimization, the proton of 

the HClO4 molecule in the HClO4⋅nH2O complexes with n > 2 passed on to the H2O molecule, thus forming three conjugated 

hydrogen bridges inside the complex (Fig. 1e-k). Parameters of two such bridges are identical in the HClO4⋅3H2O hydrate and 

differ for all three bridges in other complexes (Table 2). Note that the length of the shortest and least asymmetric hydrogen 

bridge (r(O⋯O) = 2.487-2.560 Å) is in all cases characteristic for the 
5 2

H O
+  ion whose structure is distorted under the 

influence of surrounding species. Therefore, it can be stated that complexes HClO4⋅nH2O (n = 3-9) contain 
4

ClO
−  anions and 

5 2
H O

+  cations. (Despite this structural transformation, the optimized ion-containing complexes we will be referred to below 

as nHClO4⋅mH2O). 

Note that the 
4

ClO
−  anion and the 

5 2
H O

+  ion in HClO4⋅nH2O complexes (n = 3-9) interact with each other via one or 

two H-bonds, thus forming a contact ion pair (Fig. 1e-k). Even though the relative arrangement of the counterions and the 

interaction between them can vary in different complexes, this ionic pair is the basis of the hydrate structure. Therefore, the 

solvate-separated ion pairs are formed and the HClO4⋅nH2O complexes are separated into hydrated 
5 2

H O
+  and 

4
ClO

−  at  

a smaller than 1:9 molar ratio of the HClO4–H2O solution components. 

The calculation results indicate that 
5 2

H O
+  and 

4
ClO

−  tend to participate in the interactions between the species in 

varying degrees. In the HClO4⋅nH2O (n ≥ 4) hydrates, the 
5 2

H O
+  ion forms four H-bonds, using all its capabilities. At the 

same time, the 
4

ClO
−  anion has three free lone pairs even for n = 9. The anion forms only three H-bonds in small  
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TABLE 1. Total Energies (E, hartree) and Formation Energies (ΔE, kcal/mol) of HClO⋅nH2O  
and mHClO⋅nH2O Hydrate Complexes; Formation Energies of 2HClO⋅nH2O Complexes Composed  

of Two Complexes Containing One HClO4 Molecule (Ep, kcal/mol) 

Complex –E ΔE ΔEp 

Figure number 
(in the present work) 

HClO4⋅H2O 837.770489 12.33 – 1a 

2HClO4⋅2H2O 1675.557921 35.30 10.63 1b 

8HClO4⋅8H2O 6702.307366 188.68 – 1c 

HClO4⋅2H2O 914.225113 25.18 – 1d 

HClO4⋅3H2O 990.680732 38.67 – 1e 

HClO4⋅4H2O 1067.135373 51.53 – 1f 

HClO4⋅5H2O 1143.590785 64.92 – 1g 

HClO4⋅6H2O 1220.045874 78.08 – 1h 

HClO4⋅7H2O 1296.503540 92.85 – 1i 

HClO4⋅8H2O 1372.956280 104.53 – 1j 

HClO4⋅9H2O 1449.408551 115.92 – 1k 

2HClO4⋅3H2O 1752.015839 50.23 12.70 2a 

2HClO4⋅4H2O 1828.476692 67.00 16.61 2b 

2HClO4⋅5H2O 1904.930582 79.41 15.52 2c 

2HClO4⋅6H2O 1981.391478 96.21 18.83 2d 

2HClO4⋅7H2O 2057.843710 107.57 17.32 2e 

2HClO4⋅8H2O 2134.299280 121.03 17.91 2f 

2HClO4⋅9H2O 2210.748057 130.22 13.74 2g 

2HClO4⋅10H2O 2287.199555 141.13 11.29 2h 

2HClO4⋅11H2O 2363.654746 154.35 11.37 2i 

2HClO4⋅12H2O 2440.110794 168.10 11.91 2j 
 

HClO4⋅nH2O complexes (n = 3 and 4) and four in larger complexes (n = 5-8), while one of its oxygen atoms never 

participates in the interactions between the species. In the largest calculated hydrate containing one acid molecule 

(HClO4⋅9H2O), the 
4

ClO
−  anion forms five H-bonds (using all four oxygen atoms), while H2O molecules are interconnected 

by six H-bonds. They strongly interact with each other also in other cases (Fig. 1h-j). Thus, in the series of HClO4⋅nH2O 

complexes containing the 
5 2

H O
+  ion, it is energetically most favorable for water molecules to form H-bonds with this ion, 

while the interaction with other water molecules rather than with the 
4

ClO
−  anion is more profitable in the case of its complete 

hydration. This result agrees with the fact that 
4

ClO
−  anions exhibit negative hydration in perchlorate aqueous solutions [1, 2]. 

Structural and energy parameters of 2HClO4⋅nH2O complexes (n = 2-12). The 2HClO4⋅2H2O complex with 

alternating acid and water molecules (Fig. 1b) contains two hydrogen bridges, in each of which the proton of the HClO4 

molecule approaches the oxygen of the H2O molecule without passing to it (Table 2). The energy required for this complex to 

from two HClO4⋅H2O complexes (Fig. 1a) is 10.63 kcal/mol (Table 1). The structure of 2HClO4⋅2H2O complexes allows 

them to be H-bonded into infinite polymer chains interacting with each other, which is a condition for a solution to transform 

into the solid phase [18]. Fig. 1c shows the optimized geometry of the chain fragment composed of four 2HClO4⋅2H2O 

complexes. As can be seen, protons of HClO4 molecules (except those at the ends of the fragment) in the 8HClO4⋅8H2O 

fragment move to H2O molecules to form 
4 3

ClO H O
− +

⋅  ion pairs. This result agrees with a high melting point of perchloric 

acid monohydrate [8]. 
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Fig. 1. Structure of hydrate complexes HClO4⋅H2O (a), 2HClO4⋅2H2O (b), 8HClO4⋅8H2O (c), HClO4⋅2H2O (d), 
HClO4⋅3H2O (e), HClO4⋅4H2O (f), HClO4⋅5H2O (g), HClO4⋅6H2O (h), HClO4⋅7H2O (i), HClO4⋅8H2O (j), and 

HClO4⋅9H2O (k). In figures f-k, the 
5 2

H O
+  ion is at the top. 

 

 

Fig. 2. Structure of hydrate complexes 2HClO4⋅3H2O (a), 2HClO4⋅4H2O (b), 2HClO4⋅5H2O (c), 2HClO4⋅6H2O (d), 
2HClO4⋅7H2O (e), 2HClO4⋅8H2O (f), 2HClO4⋅9H2O (g), 2HClO4⋅10H2O (h), 2HClO4⋅11H2O (i), and 
2HClO4⋅12H2O (j). 

 

As the content of water in the HClO4–H2O system increases, 2HClO4⋅4H2O complexes are formed after 

2HClO4⋅2H2O complexes (within the polymer chains) (Fig. 2b). Each of them consists of two HClO4⋅2H2O complexes, which 

combined together so that the protons of their HClO4 molecules passed to the H2O molecules. As a result, two 
4

ClO
−  anions  
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TABLE 2. Interatomic Distances in the Bridge of the 
5 2

H O
+  Ion and in the Conjugated Hydrogen Bridges  

of Complexes HClO4⋅nH2O (n = 3-9) and 2HClO4⋅nH2O (n = 3-12) 

Complex 
Bridge of the 

5 2
H O

+  ion Conjugated bridge I Conjugated bridge II 

r(O⋯H) r(H⋯O) r(O⋯O) r(O⋯H) r(H⋯O) r(O⋯O) r(O⋯H) r(H⋯O) r(O⋯O) 

HClO4⋅3H2O 1.033 1.527 2.560 1.026 1.541 2.567 1.026 1.541 2.567 

HClO4⋅4H2O 1.046 1.494 2.540 1.024 1.558 2.582 1.019 1.573 2.592 

HClO4⋅5H2O 1.072 1.418 2.490 1.033 1.536 2.569 0.992 1.732 2.724 

HClO4⋅6H2O 1.053 1.467 2.520 1.044 1.498 2.542 1.003 1.687 2.690 

HClO4⋅7H2O 1.054 1.458 2.512 1.036 1.519 2.555 1.016 1.568 2.584 

HClO4⋅8H2O 1.047 1.473 2.520 1.034 1.521 2.555 1.025 1.558 2.583 

HClO4⋅9H2O 1.062 1.425 2.487 1.030 1.537 2.567 1.022 1.572 2.594 

2HClO4⋅3H2O 1.030 1.511 2.541 1.022 1.545 2.567 1.009 1.615 2.624 

2HClO4⋅4H2O 1.031 1.512 2.543 1.020 1.555 2.575 1.012 1.603 2.615 

2HClO4⋅5H2O 1.033 

1.076 

1.505 

1.401 

2.538 

2.477 

1.015 

1.007 

1.589 

1.624 

2.604 

2.631 

1.015 

1.000 

1.591 

1.677 

2.606 

2.677 

2HClO4⋅6H2O 1.089 

1.062 

1.365 

1.435 

2.454 

2.497 

1.003 

1.027 

1.634 

1.517 

2.637 

2.544 

1.003 

0.999 

1.643 

1.681 

2.646 

2.680 

2HClO4⋅7H2O 1.061 

1.069 

1.448 

1.419 

2.509 

2.488 

1.033 

1.039 

1.505 

1.508 

2.538 

2.547 

0.997 

0.985 

1.745 

1.901 

2.742 

2.886 

2HClO4⋅8H2O 1.070 1.413 2.483 1.032 1.540 2.572 0.995 1.733 2.728 

2HClO4⋅9H2O 1.065 

1.085 

1.425 

1.388 

2.490 

2.473 

1.034 

1.044 

1.533 

1.482 

2.567 

2.526 

1.000 

0.990 

1.684 

1.795 

2.684 

2.785 

2HClO4⋅10H2O 1.085 1.388 2.473 1.045 1.475 2.520 0.992 1.770 2.762 

2HClO4⋅11H2O 1.106 1.351 2.457 1.010 1.605 2.615 1.005 1.670 2.675 

2HClO4⋅12H2O 1.062 1.446 2.508 1.049 1.477 2.526 0.994 1.751 2.745 
 

and two 
5 2

H O
+  cations (the structure of the latter is distorted compared to that in the gas phase) were formed inside 

2HClO4⋅4H2O. At the same time, the bridge of each 
5 2

H O
+  ion is connected with two unstrained hydrogen bridges (Table 2). 

The structure of the 2HClO4⋅4H2O complex can be described as a cycle composed of two 
45 2

H O ClO
+ −

⋅  contact ion pairs 

connected by two H-bonds. Each ion pair also has a cyclic structure where the cation and the anion are connected by two H-

bonds. 

The structure of 2HClO4⋅4H2O complexes allows them to combine with each other and with 2HClO4⋅2H2O 

complexes into infinite interconnected polymer chains. For the molar component ratio 1:1.5, in the case of equal amounts of 

2HClO4⋅2H2O complexes (in the form of 
3 4

H O ClO
+ −

⋅  ion pairs) and 2HClO4⋅4H2O complexes, the system exists in the solid 

state (Tm = 26 °C) [8]. As the fraction of 2HClO4⋅4H2O complexes increases (with increasing water concentration), the 

melting temperature decreases and the system transforms into the liquid phase [8], apparently because 
5 2

H O
+  ions form 

weaker H-bonds with the environment than H3O
+ ions. Structural features of 2HClO4⋅4H2O complexes suggest that they 

interact with each other in solutions to form small polymer chains. 

Adding one water molecule to the 2HClO4⋅4H2O complex followed by the formation of the 2HClO4⋅5H2O complex 

(Fig. 2c) does not significantly affect the structure of this compound (the framework of the 2HClO4⋅4H2O complex is 

maintained). A characteristic feature of the resulting compound is that it is formed at the boundary between two 

concentration-structural regions. The first of them contains complexes consisting of two contact ion pairs, and the second one 

contains hydrated contact ion pairs. 
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The next complex, 2HClO4⋅6H2O (Fig. 2d), consists of two HClO4⋅3H2O complexes that were strongly deformed 

during the optimization. The complexes are connected by four H-bonds whose total energy (18.83 kcal/mol) exceeds the ΔEp 

values of other paired complexes (Table 1). Two of these bonds connect the contact ion pairs to each other; each of the other 

two H-bonds is formed by a water molecule hydrating two contact ion pairs. 

The 2HClO4⋅nH2O complexes (n = 7-12) contain hydrated contact ion pairs with counterions sharing a common 

hydrogen bond (Fig. 2e-k). Components of the 2HClO4⋅7H2O complex (HClO4⋅3H2O and HClO4⋅4H2O) are connected by 

four H-bonds (Fig. 2e). In the complexes 2HClO4⋅nH2O (n = 7-8), similarly to the paired ones with a lower water content 

(n = 3-6), two contact ion pairs are connected by two H-bonds. In larger complexes (n = 9-12), the interaction between ion 

pairs is much weaker (Table 1). The 2HClO4⋅9H2O complex contains one H-bond, and two contact ion pairs are separated by 

water molecules beginning from 2HClO4⋅10H2O. Weakening the interaction between the individual parts of paired complexes 

will lead to their dissociation in the solution and subsequent formation of complexes containing one HClO4 molecule 

(Fig. 1g-k). 

The above results explain why paired complexes are formed in the HClO4–H2O system at the molar component ratio 

≥1:4, while HClO4⋅nH2O complexes are formed in more dilute solutions (n = 5-9). The structure of 2HClO4⋅nH2O (n = 4-8) 

complexes is based on a very strong cycle composed of two 
4 5 2

ClO H O
− +

⋅  contact ion pairs connected by two H-bonds. 

Therefore, in contrast to the complexes with weakly interacting constituent parts 2HClO4⋅nH2O (n ≥ 9), such complexes do 

not break down in the solution into smaller complexes containing one HClO4 molecule. 

Our calculations indicate that the HClO4–H2O system contains the following concentration-structural regions. 

Components of the most concentrated solutions are partially or completely connected into 2HClO4⋅4H2O cyclic complexes 

composed of two 
5 2

H O
+ ·

4
ClO

−  contact ion pairs. For lower acid contents, the following paired complexes are formed in 

solutions: 2HClO4⋅5H2O, 2HClO4⋅6H2O, 2HClO4⋅7H2O, and 2HClO4⋅8H2O. The complexes contain hydrated ion pairs where 

counterions are still bonded to each other. Even more dilute solutions ([HClO4]:[H2O] from 1:5 to 1:9) contain complexes 

comprising one acid molecule each and also consisting of 
4 5 2 2

ClO H O H On
− +

⋅ ⋅  hydrated contact ion pairs (n = 5-9). 

Thus, there is the following explanation of the melting curve structure [8]. As the solution temperature decreases, 

paired complexes combined into interacting chain structures characterized by relatively high melting points [8]. 

Asymmetry degree of O⋯H⋯O hydrogen bridges as a function of their length. Another interesting result was 

obtained by analysing the parameters of three conjugated hydrogen bridges in the 2HClO4⋅nH2O (n = 4-8) and HClO4⋅nH2O 

(n = 5-9) complexes observed in the studied solutions. It was established for r(O⋯O) < 2.6 Å that there is a linear 

dependence between the length of the O⋯H⋯O bridge and its asymmetry degree (Fig. 3) characterized by the coefficient 

Kasym equal to the ratio between long and short H-bonds of the bridge (r(H⋯O)/r(O⋯H)). Linear nature of this dependence in 

the considered range of r(O⋯O) values indicates that two main structural parameters (r(O⋯O) and Kasym) in short hydrogen 

bridges (e.g. in 
5 2

H O
+  ions) change symbatically with the molecular environment. The deviation of this dependence from  

a straight line increases with increasing distance between the oxygen atoms. Using these data, the proton position in the 

5 2
H O

+  ion bridge can be estimated only from its r(O⋯O) length. 

IR spectroscopy study. Fig. 4 shows MFTIR spectra of water and aqueous perchloric acid solution with  

a concentration of 6.6 mol/L (39.8 mol/L H2O). The differences observed in these spectra over the entire frequency range are 

due to the formation of 
5 2

H O
+  hydrated ions with strong quasi-symmetric H-bonds in O⋯H⋯O bridges [19-21] and due to 

the hydration of 
4

ClO
−  anions. A characteristic feature of the IR spectra of 

5 2
H O

+  ions is continuous absorption (CA) in the 

region from 900 cm–1 to 4000 cm–1 caused by the presence of a large number of overlapping intense high-order bands arising 

due to the electro-optical anharmonicity of the O⋯H⋯O bridge and strong kinematic interaction between its coordinates and 

the ligand coordinates [22]. The spectrum of 
5 2

H O
+  ions exhibit a number of separate bands on the background of continuous 

absorption [23]. 
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The obtained data indicate that the system HClO4–H2O contains three concentration-structural regions. The first of 

them is a region of dilute solutions up to [HClO4]0:[H2O]0 ≈ 1:13.3 containing solvate-separated 4
ClO

−  and 
5 2

H O
+  hydrated 

ions. The acid concentration ranges corresponding to this concentration-structural region obtained in our studies (up to 

1:13.3) virtually coincide with the NMR data (up to 1:14) reported in [27, 28]). At a significant excess of water in HClO4 

solutions, two water molecules are involved in the formation of the 
5 2

H O
+  ion, and four water molecules participate in the 

formation of each solvation shell of the counterions. 

The linear dependence of 
1640

D
*  on [H2O] is violated (Fig. 8), apparently due to the fact that some water molecules 

are coordinated both with the anion and with the cation, thus forming ion pairs in the solutions. The calculation data suggest 

that the coefficient slightly decreases in solutions containing hydrated contact ion pairs with one HClO4 molecule (second 

concentration-structural region) (Fig. 1g-k) and changes significantly due to the formation of paired complexes (third 

concentration-structural region) (Fig. 2b-f). 

CONCLUSIONS 

We conducted a comprehensive computational and experimental study of the composition, structure, energy 

parameters, and existence regions of hydrate complexes formed in the HClO4–H2O system. The following concentration-

structural regions were determined by comparing the calculation and IR spectroscopy data. Dilute solutions up to the 1:13.3 

molar component ratio contain solvate-separated 
4

ClO
−  and 

5 2
H O

+  hydrated ions. More concentrated solutions (1:13.3-1:5) 

contain hydrated solvate-separated or contact ion pairs, counterions of the latter being interconnected by one or two H-bonds. 

Below the 1:5 ratio, complexes containing two acid molecules are formed. Their structure is based on strong cycles composed 

of two contact ion pairs connected by two H-bonds. Such cyclic complexes with the general formula 
4 5 2 2

2ClO 2H O H On
− +

⋅ ⋅  

(n = 4-0) are successively formed over a wide range of HClO4 concentrations, and non-hydrated ion pairs (n = 0) are also 

formed after the HClO4–H2O system transforms into the solid phase. 

It was shown that short hydrogen bridges O⋯H⋯O (r(O⋯O) < 2.6 Å), in particular 
5 2

H O
+  ion bridges, exhibit  

a linear dependence between their length and the asymmetry degree. This fact can be used to estimate the proton position in 

the 
5 2

H O
+  ion bridge when only its length is known. 
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