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EX SITU AND IN SITU STUDIES  
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Heterogeneous catalysts xRu/Ce0.75Zr0.25O2 (x = 1, 5 wt.%) are prepared by the sorption-hydrolytic 

precipitation. It is shown that these catalysts are active in the methanation of carbon dioxide. The 

composition and structural features of these compounds are studied by a complex of methods such as 

powder XRD, high-resolution electron microscopy, chemisorption, and X-ray photoelectron spectroscopy 

(XPS). It is established that catalysts obtained by the sorption-hydrolytic method contain the active 

component in a highly dispersed state. The catalyst with 1 wt.% Ru contains ruthenium compounds in the 

form of atomic clusters, while that with 5 wt.% Ru contains, along with ultrafine forms, also crystallized 

ruthenium-containing particles. It is shown that the initial catalysts contain oxide ruthenium compounds 

that are reduced to the metallic state under the methanation reaction conditions. In situ studies by powder 

XRD, XPS studies, temperature-programmed reduction in the hydrogen atmosphere (H2-TPR) show that 

metal ruthenium particles, which were obtained by the activation treatment of the catalysts as a result of 

heating in a hydrogen-enriched flow, promote the process of the partial reduction of the support material 

particles due to the spillover effect. 
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Keywords: CO2 methanation, catalysts, ruthenium, mixed cerium-zirconium oxide, powder XRD, XPS, 
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INTRODUCTION 

Various techniques of carbon dioxide processing have been rapidly developed nowadays due to the deterioration of 

global environmental problems caused by anthropogenic greenhouse gas emissions. The catalytic reaction of CO2 

hydrogenation or methanation (Sabatier process) attracts interest as a process of carbon dioxide recycling to obtain methane 

utilized as a valuable energy carrier. 

2 2 4 2
CO 4H CH 2H O.+ → +                    (1) 
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The modern “power-to-gas” (P2G) technique used for converting electrical energy into chemically bound energy 

also involves the methanation catalytic process. In this technique, electrolysis is used to convert the excess electricity into 

hydrogen which reacts with carbon dioxide and transforms into methane [1-3]. The advantages of keeping excess electricity 

in the form of methane include its long-term storage and easy transportation. 

The progress of these technologies stimulated the development of effective heterogeneous catalysts for CO2 

methanation. It was shown that the most efficient catalysts are based on noble metals such as ruthenium [4-6], rhodium [7-9], 

palladium [10, 11] or on less expensive transition metals such as nickel, iron, cobalt, etc. [12-14]. Ruthenium-containing 

catalysts exhibit the highest rates of methane conversion in the low-temperature region [15]. Supported ruthenium catalysts 

based on easily reducible oxide supports such as cerium dioxide CeO2 or mixed cerium-zirconium oxides Ce1–xZr
x
O2 achieve 

high activity at low reaction temperatures and low active component contents [16-19]. It is assumed that their high catalytic 

activity is due to the participation of the support surface in the catalytic process. In methanation reactions, the catalysts 

operate in a hydrogen-enriched reaction atmosphere under reducing conditions, and before the use they are reduced in  

a hydrogen-containing flow at the temperatures of their subsequent operation. It is assumed that the reduced CeO2 or  

Ce1–xZr
x
O2 surface contains sites of CO2 activation [16, 20]. 

The easiest and most commonly approach to the structural studies of catalysts includes the diagnostics of materials 

in the initial state, after activation treatments, and after reaction tests. However, ex situ studies alone cannot reveal the 

relationship between the composition and structure of a catalyst and its catalytic characteristics, whereas structural 

diagnostics of catalytic materials under conditions most closely similar to the conditions of their activation and operation can 

reveal the nature of active sites. 

The purpose of this work is to study the structural features of Ru/Ce1–xZr
x
O2 ruthenium-containing catalysts prepared 

by the sorption-hydrolytic precipitation and to reveal the changes in the structure of catalysts during their activation by 

continuous heating in a hydrogen-enriched gaseous environment. We conducted powder XRD and electron microscopy ex 

situ studies of the catalysts in the initial state and after CO2 methanation. Also, transformations of the phase composition and 

structure of the catalyst components were studied by in situ powder XRD. Changes in the surface composition of the catalysts 

were studied by pseudo in situ XPS. The reduction process was investigated by hydrogen temperature-programmed reduction 

(H2–TPR). 

EXPERIMENTAL 

Catalyst preparation. The material for the catalyst support was the Ce0.75Zr0.25O2 commercial mixed oxide 

(Ekoalliance). The samples of xRu/Ce0.75Zr0.25O2 catalysts (x = 1 wt.%, 5 wt.%) were prepared by the sorption-hydrolytic 

precipitation. It was shown in [21-23] that this method allows for a reproducible production of catalysts based on platinum 

group metals (Pt, Ru, Rh) with high dispersed supported particles. The ruthenium chloride hydrate RuCl3⋅H2O (Krastsvetmet) 

was used as the ruthenium precursor. Firstly, a hydrochloric acid solution of ruthenium chloride with the molar ratio 

HCl:RuCl3 = 3:1 was prepared to obtain hexachlororuthenic acid H3RuCl6. Then an oxidizing agent (H2O2) was added to the 

solution, and the obtained solution was boiled . Next, hydrazine dichloride was added to the solution in a molar ratio of 

N2H6Cl2:Ru = 3:1. The resulting solution was evaporated to dryness and then dissolved in water to a volume of 10 mL.  

A weighted amount of powder support was added to the solution using a magnetic stirrer, and then a Na2CO3 solution (1 mol) 

was added dropwise to the molar ratio Na:Cl = 1:1. The suspension was stirred for 10 min at 25 °C and then for 30 min at 

80 °C. 10% from the initial amount of sodium carbonate were added. The obtained precipitate was filtered and dried at 80 °C. 

The final heat treatment of the samples was carried out in air at 420 °C for 1 h. The material of the support sample 

Ce0.75Zr0.25O2 is referred to below as CZ, the catalyst samples with different ruthenium contents xRu/Ce0.75Zr0.25O2 are 

referred to as xRu/CZ. 

According to X-ray fluorescence analysis, the elemental composition of all the obtained samples corresponded to the 

required one within the determination error. 
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Studying the catalytic properties. The experiments were carried out in a flow-through U-shaped quartz reactor 

(inner diameter = 3 mm) at the atmospheric pressure in the 200-450 °C temperature range (catalyst weight: 125 mg, fraction: 

0.25×0.5 mm, gas mixture flow rate: 30000 cm3/gcath). The composition of the reaction mixture (vol.%) was 4CO2 + 16H2 + 

+ 80Ar (balance). The temperature was controlled using a chromel-alumel thermocouple inserted in the catalyst bed. Before 

the catalytic tests, the catalysts were heated in He up to 170 °C and reduced in an H2/Ar flow for 1 h at 400 °C. The inlet and 

outlet reaction mixture was analyzed using a Khromos GKh-1000 gas chromatograph (Russia) equipped with a thermal 

conductivity detector (column - CaA molecular sieves) and a flame ionization detector (PorapakQ column) with  

a methanator, which determines CO, CO2, CH4 contents up to 1 ppm. The deviations of CO2 and H2 concentration in the 

initial mixture from the required ones did not exceed ±0.5 vol.% and 1 vol.%, respectively. Equilibrium compositions were 

calculated using the HSC 7.0 program under the assumption that they contained only gaseous substances (CH4, CO, CO2, H2, 

H2O). 

Studying the samples by physical and chemical methods. The ex situ powder XRD studies were conducted on  

a STOE STADI MP diffractometer (STOE, Germany) in the transmission mode using MoKα radiation (λ = 0.7093 Å). The 

diffractometer was equipped with a linear position-sensitive MYTHEN2 1K detector (Dectris AG, Switzerland). The 

scanning was performed in the 2θ range of 3-35° with a step of 0.015°. The qualitative powder XRD analysis was carried out 

using the ICDD PDF-4+ database. The average coherent scattering region (CSR) of crystal phases was determined from peak 

broadening using the Scherrer equation while taking into account the instrumental broadening measured from the XRD 

pattern of a NIST SRM 660c reference sample (LaB6). 

The in situ powder XRD studies were conducted on a Bruker D8 Advance diffractometer (Bruker, Germany; CuKα 

radiation, λ = 1.5418 Å) equipped with a LynxEye linear detector (2θ range = 2.9°). The measurements were carried out in 

the 2θ range 10-80° with a step of 0.05° using an XRK-900 high-temperature reactor chamber (Anton Paar, Austria) in the 

temperature range 25-400 °C under atmospheric pressure. The heating rate was 10 °C/min. The flow rate of the gaseous 

reaction mixture was controlled by an ALBORG gas control system. The supplied reaction mixture contained 10 vol.% of H2 

in He. 

The hydrogen temperature-programmed reduction was performed on a ChemBET Pulsar TPR/TPD analyzer 

(Quantachrome Inst., USA). The TPR profile was recorded in a flow of 10% H2 in Ar from 30 °C to 900 °C. The heating rate 

was 10 °C/min. TPR curves were normalized to the catalyst mass. 

Transmission electron microscopy studies were conducted in the direct resolution mode (HRTEM) and scanning 

electron microscopy studies were conducted in the dark-field mode (STEM) using a high-angle annular dark-field (HAADF) 

detector for recording electrons scattered at large angles. Experiments were performed on a Themis Z microscope (Thermo 

Fisher Scientific, Netherlands) equipped with a two-fold astigmatism corrector at an accelerating voltage of 200 kV. Local 

elemental analysis was carried out using the energy-dispersive X-ray spectroscopy (EDS) data obtained on a Super-X EDX 

spectrometer (Thermo Fisher Scientific, Netherlands). 

The pseudo in situ XPS research were conducted on a SPECS Surface Nano Analysis GmbH spectrometer 

(Germany) equipped with a PHOIBOS-150-MCD-9 hemispherical analyzer. The spectra were recorded using non-

monochromatic AlKα radiation (hν = 1486.61 eV). The catalyst samples were studied in the initial state and after a reduction 

treatment in hydrogen at temperature of 400 °C and under a pressure of 1000 mbar for 30 min. The spectrometer was 

equipped with a special high-pressure cell allowing the sample to be processed and transferred into the analyzer chamber 

without contacting the air. The spectrometer was calibrated for the Ce3d3/2-u′′′ line (Eb = 916.7 eV). Relative contents of 

elements were determined from the integrated line intensities while taking into account photoionization cross sections of the 

corresponding terms [24]. After performing the Shirley background correction, the experimental curve was fitted by a number 

of lines corresponding to the electron photoemission of atoms in different chemical environments. The data were processed 

using the CasaXPS package [25]. 
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Fig. 3. STEM images of initial 1Ru/CZ (A.1) and 5Ru/CZ (B.1) catalysts and element distribution maps in the 
analyzed regions according to the EDX data for the samples 1Ru/CZ (A.2, A.3, A.4) and 5Ru/CZ (B.2, B.3, B.4). 

 

 

Fig. 4. STEM images of the tested 1Ru/CZ (A.1) and 5Ru/CZ (B.1) catalysts and element distribution maps in the 
analyzed regions according to the EDX data for the samples 1Ru/CZ (A.2, A.3, A.4) and 5Ru/CZ (B.2, B.3, B.4). 

 

The HRTEM data (Fig. 5) indicate that the large ruthenium-containing particles detected in the 5Ru/CZ catalyst 

before and after the catalytic tests correspond to the ruthenium oxide RuO2 and the metallic ruthenium Ru0, respectively. The 

result agrees with the powder XRD data. 
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Fig. 11. Ru 3d–C 1s (A) and Ce 3d spectra of the 1Ru/CZ catalyst before (1) and after the catalyst 
reduction in hydrogen (2). 

 

4.17 eV. Characteristic Ru 3d5/2 binding energies fall within a region of 279.8-280.3 eV for metallic ruthenium Ru0 and 

within 280.5-281.4 eV for the Ru4+ oxidized ruthenium in the form of the RuO2 oxide [45-48]. It was established that 

ruthenium in the initial 1Ru/CZ catalyst exists in the oxidized state, and the Ru 3d5/2 binding energy is 281.2 eV. After the 

treatment in hydrogen, the binding energy of the Ru 3d5/2 peak decreases down to 280.2 eV, indicating the reduction of 

ruthenium (Fig. 11). Thus, it was determined that the treatment in hydrogen completely reduces the ruthenium oxide 

compounds to the metallic Ru0 state. 

Fig. 11b also shows Ce 3d spectra of the 1Ru/CZ catalyst before and after the reduction in hydrogen. As a result of 

spin-orbital interaction, the Ce 3d level splits into two sublevels Ce 3d5/2 and Ce 3d3/2 and forms a doublet with a 3:2 ratio of 

integrated line intensities. In turn, each component of the doublet is split into three Ce4+ lines (v/u, v″/u″, v′′′/u′′′) and two 

Ce3+ lines (v′/u′, v0/u0) [46, 47]. Fitting the spectra by individual components showed that the fraction of the Ce3+ cation in 

the initial catalyst is 24% and increases significantly (up to 43%) as a result of the reduction treatment in hydrogen. The XPS 

data confirm that the reduction treatment of the 1Ru/CZ catalyst leads to the formation of metallic ruthenium and causes 

partial reduction of the surface oxide support associated with a significant increase of the fraction of Ce3+ cations. 

It was shown in a number of studies that ruthenium catalysts, containing cerium dioxide or CeO2 based mixed 

oxides as the support material, exhibit a higher activity in the methanation of carbon oxides than systems with supports based 

on inert materials [16, 49, 50]. It is believed that the enhanced catalytic properties are due to the fact that the easily reduced 

support surface participates in the catalytic reaction. The oxygen-deficient centers on the oxide support surface can act as 

activation centers for CO2 molecules so that the reaction proceeds in the region of the metal/support interface according to the 

formate mechanism [16, 17, 50]. The presented results of in situ studies of Ru/Ce1–xZr
x
O2 catalysts in the process of their 

activation in a hydrogen-containing reaction environment confirm that the surface of the Ce1–xZr
x
O2 oxide support is partially 

reduced by hydrogen atoms diffusing from the surface of supported Ru0 particles. 
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CONCLUSIONS 

Comprehensive studies of the catalytic properties and structural features of supported xRu/Ce0.75Zr0.25O2 ruthenium 

catalysts of CO2 methanation were conducted. Catalysts with different contents of the active component (x = 1 wt.%, 5 wt.%) 

were prepared by the sorption-hydrolytic precipitation. According to the catalytical tests, the samples exhibit good activity in 

the reaction of CO2 methanation. It was established that the initial and the tested catalysts contain oxidized (Ru4+) and 

metallic (Ru0) ruthenium, respectively. The 1Ru/Ce0.75Zr0.25O2 catalyst with 1 wt.% Ru contains ruthenium compounds in an 

ultradispersed state. Increasing the ruthenium content up to 5 wt.% makes enlarges the active component particles. The 

catalyst with 5 wt.% Ru contains, in addition to ultrafine forms, crystallized ruthenium-containing particles. The in situ 

studies of the changes in the composition and structure of the catalysts during their activation treatment showed that the 

formation of metallic ruthenium particles under reduction conditions promotes partial reduction of the oxide support. The 

results demonstrate that the Ce1–xZr
x
O2 oxide support can participate in redox processes. It is believed that the high activity of 

supported metal catalysts in methanation reactions is due to the formation of oxygen-deficient centers in the region of the 

metal/support interface. 
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