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Copper films with a thickness varying from 6 nm to 100 nm are prepared by magnetron sputtering. The 

films are characterized by homogeneous and fine-grained microstructure. The X-ray diffraction data 

confirm formation of a copper fcc phase orientated predominantly in the (111) direction. Depending on the 

growth conditions, the size of Cu grains in the films varies from 7 nm to 20 nm. The refractive index of the 

films increases from 0.52 to 1.22 with decreasing copper film thickness. The transmittance of the films 

decreases as their thickness increases from 6 nm to 62 nm, and the transparency of the films with the same 

thickness decreases with increasing sputtering power and decreasing argon flow rate. The surface resistivity 

of the films decreases from 8.89±0.06 Ω/sq to 1.47±0.01 Ω/sq as their thickness increases from 20 nm to 

70 nm. 

DOI: 10.1134/S0022476623120156 
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INTRODUCTION 

Formation of thin copper films is interesting from scientific and technical viewpoints due to the possibility of using 

these materials in numerous technological applications. Copper exhibits a number of outstanding properties such as high 

melting point and electrical conductivity, good thermal conductivity, plasticity, wear resistance, etc.[1-3]. Submicron thick 

copper films with nanosized grain are employed in micro- and nanoelectronics, catalysis, biomedicine, production of sensors 

and electromagnetic devices, etc. [4-7]. Possessing a number of advantages of copper over aluminum (lower resistivity, 

resistance to electromigration, higher cell switching speeds), copper is currently viewed as the main material of conductive 

intercell connectors in integrated circuits [4, 8]. Ultrathin (<10 nm) copper films, combining high transmittance with good 

electrical conductivity, may be promising transparent electrodes in solar cells, LEDs, and other photovoltaic devices [9, 10]. 

The multi-purpose use of copper films, optimization of their structural and functional characteristics, and expansion of their 

functionality constantly pose new synthesis challenges. That is the reason why the study of Cu film deposition has been 

considered an important task for more than half a century by now. At the same time, researchers have met troubles when 

trying to obtain films with desired structural parameters required to control their functional characteristics and ensure their 

reproducibility. Copper films are usually prepared on Si(100), glass, and quartz glass substrates using chemical vapor 

deposition [11-16], atomic layer deposition [17, 18], physical vapor deposition (magnetron sputtering, electron-beam  
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evaporation, thermal evaporation) [4, 19, 20], and electrochemical deposition [21, 22]. When choosing the preparation 

method, requirements for the deposited films should be taken into account. The most important of them include good 

adhesion to the substrate surface, uniform thickness, homogeneity, grain fineness, and lack of porosity. 

In recent years, magnetron sputtering has established itself as one of the most promising methods for producing thin 

copper films. High-purity, uniform, and highly adhesive films can be prepared by this method at high deposition rates while 

(and most importantly) preserving stable deposition conditions and precise control for the thickness and grain size of Cu 

films. The tasks approached by researchers concern the effect of thickness, structure, and grain size of films on their physical 

characteristics. The properties of deposited films (deposition rate, surface morphology, roughness, microstructure, electrical, 

mechanical, and optical characteristics) are determined by deposition conditions such as reaction chamber geometry, 

magnetron discharge parameters (current, voltage, and sputtering power), pressure of the working gas (argon), presence of 

additional gas (e.g., hydrogen), distance between the Cu target and the substrate, and the substrate temperature. Currently, the 

main attention is focused on the synthesis of nano-sized copper films. Most of reported works consider the influence of 

various synthesis parameters and film thicknesses on electrical properties of the films. The works devoted to optical and 

mechanical characteristics of thin Cu films are few in number. The deposition of Cu targets by magnetron sputtering is 

usually performed at room temperature. The dependence of the properties of films prepared by this method on temperature 

has been considered only in few sporadic works. The effect of deposition conditions on the properties of copper films is 

illustrated by the data in Table 1. 

According to publications, electrical conductivity values, mechanical characteristics, and optical constants of copper 

films depend on their structure, surface morphology, and thickness. There are several works devoted to the influence of 

synthesis parameters on the rate of copper film formation. It was reported that the rate of film deposition decreases with 

increasing Cu target - substrate distance in the reaction chamber and increases with increasing sputtering power or p(Ar) 

[25, 32]. Particular attention was paid to the effect of deposition conditions on the structural properties and morphological 

characteristics of films. It was established that the grain size and the root mean square roughness of the film surface increases 

with increasing film thickness [26, 32-34], while the crystallinity of the films improves [26]. Note that the average crystallite 

size significantly increases with increasing temperature. The authors of [27] reported that the grain size increased from 10 nm 

to 123 nm as Tdepos increased from 250 °C to 400 °C. According to [23-25], the film surface becomes rougher and their 

structure changes from fine-grained to columnar with increasing argon pressure. 

The design and optimization of devices and instruments require data on the functional characteristics of thin copper 

films. Special attention is paid to the dependence of film resistivity on magnetron sputtering parameters and film thickness. 

As the thickness increases, the conductive properties of films improve, while the resistivity rapidly decreases and then 

approaches some constant value, usually exceeding the 1.67 μΩ⋅cm value typical for bulk materials [26, 35-37]. High 

resistivity of ultrathin films is explained by the presence of impurities (oxygen, carbon etc.) and by the presence of defects 

and strains in the films [28, 29]. Note that the conductive layer is formed only in the films thicker than 5 nm [38]. 

Optical constants of copper films (refractive index n and extinction coefficient k) were determined by ellipsometric 

studies. The data on the study and simulation of optical constants of solid copper were reported  earlier in [39-44]. However, 

there is much less data related to optical constants of thin copper films, particularly to their dependence on deposition 

conditions. Determining true constants of metal films by indirect ellipsometry is difficult due to some innate features of this 

method, which will be discussed below. Additional information on the effect of deposition conditions on the optical 

properties of copper films can be obtained by transmission spectrophotometry. The few studies devoted to the Cu film 

transparency were focused on its dependence on film thickness, and we could find no data related to the effect of other 

magnetron sputtering parameters. The authors of [26] showed that the transmittance of Cu films exceeds 90% at a film 

thickness of 2-3 nm and decreases abruptly to 76-80% as the film thickness increases to 3.5 nm. According to the 

ellipsometry data, the refractive index of films changes from 1.38 to 1.95 with increasing copper film thickness [30]. 
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TABLE 1. Synthesis Conditions and Properties of Copper Films Prepared  
by Magnetron Sputtering of a Cu Target in Argon 

Synthesis method 

Deposition conditions Properties of Cu films 

Ref. Tdepos, °C 

l, cm 
P, W 

p, mTorr 
F(Ar), cm3/min 

dCu, nm 
V, nm/min 

Rms, nm
D, nm 

ρ, μΩ⋅cm 
H, GPa 
E, GPa 

T, %  
n 

MPP MS 

RT 

10 

2000 

0.8-5.3 

80 

1200-1700 

44-82 

2.2-6.4 

– 
– 

2.6-3.4 

128-147 

– 

– 

[23], 

[24] 

DC MS 

RT 

25-55 

500 

0.5-3.0 

– 

– 

6-32 

0.8-3.0 

– 
– 

– 

– 

– 

– 
[25] 

RF MS 

RT 

6.5 

17 

1.5 

60 

2-250 

3 

0.2-0.5 

2.4-6.0 
5000-25 

– 

– 

40-90 

(dCu = 2-10 nm) 

– 

[26] 

RF MS 

250, 400 

7 

– 

7.5 

– 

532, 596 

10 

– 

10, 123 
38.4, 2.2 

– 

– 

– 

– 
[27] 

DC MS 

RT 

5 

160 

7.5-15 

– 

18-222 

50 

– 

6-24 
– 

– 

– 

– 

– 
[28] 

DC MS 

RT 

2.3-2.9 

– 

3.8 

– 

5-2000 

5-50 

– 

1-24 
3-8.5 

– 

– 

– 

– 
[29] 

RF MS 

RT 

– 

300 

1 

30 

4.5-17.0 

– 

0.7-1.9 

– 
39-8.9 

– 

– 

– 

1.38-1.95 
[30] 

DC MS 

RT 

– 

– 

38 

– 

13-28 

7.2 

– 

9.2-21.3 
– 

– 

– 

10-40 

– 
[31] 

Note. Deposition temperature (Tdepos), target - substrate distance (l); plasma power (P); reactor's working pressure 
(p); argon flow rate (F(Ar)); film thickness (dCu); deposition rate (V); grain size (D); resistivity (ρ); hardness (H); elastic 
modulus (E); transmittance (T); refractive index (n). Modulated pulsed power magnetron sputtering system (MPPMS); direct 
current magnetron sputtering (DC MS); radio frequency magnetron sputtering (RF MS). 

 

Thus, it is an interesting task to develop a technique for depositing thin copper films by magnetron sputtering, to 

study the kinetics of metal layer growth and structural properties of the films, and to determine the effect of deposition 

parameters on electrical and optical properties of obtained films. 

EXPERIMENTAL 

The copper films were prepared in a Torus 2″ HV magnetron sputtering system (Fig. 1) using a Cu target 

(99.99 wt.% purity) as the cathode and Ar (high-purity grade) as the working gas. Polished quartz glass and Si(100) plates 

were used as the substrates for Cu film deposition. Before the experiments, the substrates were degreased. Then, the silicon 

plates were additionally chemically etched. Copper targets were sputtered using an APEL-M-1.5PDC-800-2 direct current 

generator in the constant power mode. Before the film deposition procedure, the system was pumped out to the residual 

pressure of 3⋅10–5 Torr. The constant rate of Ar flow during the deposition was maintained using a Horiba SEC-Z512 flow  
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Fig. 1. Schematic experimental technique. 
 

controller. The working pressure in the vacuum chamber was (2-4)⋅10–3 Torr. The substrates were not additionally heated 

during the deposition. 

The influence of deposition parameters on the film properties were studied in the course of three series of 

experiments. When preparing films of various thicknesses, the sputtering time was varied at a constant power and an argon 

flow rate. The dependence of film properties on the generator power and the argon flow rate was determined using films of 

the same thickness. The experimental conditions are listed in Table 2. 

Film characterization methods. The phase composition of the layers was determined by XRD using a Shimadzu 

XRD-7000 diffractometer (CuKα radiation; λ = 0.154051 nm; Ni filter; 2θ range: 5-60°; 2θ step: 0.03°; counting time per 

point: 1 s). Transmission electron microscopy (TEM) and energy dispersive (EDX) elemental mapping images were obtained 

on a ThemisZ microscope (Thermo Fisher Scientific) at an accelerating voltage of 200 kV using a Super-X EDS detector. 

Surface morphology was studied on a Jeol JSM 6700F scanning electron microscope, the elemental composition of Cu films 

was determined using an EDS Bruker Quantax 200 energy dispersive attachment equipped with a X-Flash 6|60 detector. The 

SEM method was also used to study the transverse fractures of the samples and to determine their thickness. The thickness 

and optical constants of some films were additionally calculated by the ellipsometry method. The ellipsometric measurements 

of copper films were performed on a LEF-3M ellipsometer (λ = 632.8 nm) at eight different light incidence angles varied  

 

TABLE 2. Experimental Conditions of Magnetron Sputtering 

Conditions Values 

P, W 100 200 300 300 300 300 300 300 300 300 

F(Ar), cm3/min 50 50 50 25 100 50 50 50 50 50 

dCu, nm 35 30 28 26 27 100 62 43 21 12 

Vdepos, nm/min 35 90 138 140 150 125 128 136 126 144 

Target Cu 

Sputtering power, W 100-300 

Substrates Si(100), quartz glass 

Substrate - target distance, cm 10 

Residual pressure, Torr 3⋅10–5 

Ar flow rate, cm3/min 25-100 

Working pressure, Torr (2-4)⋅10–3 

Deposition temperature, °C 22 
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from 45° to 80° with a step of 5°. When solving the inverse problem, the searched parameters were the refractive index n and 

the extinction coefficient k. Film thicknesses were determined from the SEM measurements of samples transverse fractures. 

The inverse ellipsometry problem was solved by minimizing the mean squared error (MSE): 

1 2 2
[( ) ( ) ]

,
2

i

pi ei pi eiN
MSE

N

=

ψ −ψ + Δ − Δ
=

∑
    (1) 

where ψei and Δei are the measured values of ellipsometric angles ψ and Δ for the ith incident angle; ψpi and Δpi are the 

calculated values of these angles; N is the number of incident angles. 

The transmittance spectra of the samples on quartz glass substrates was recorded using a spectrophotometric system 

based on a “Kolibri-2” spectrometer (VMK Optoelektronika, Russia), an AvaLight-DHS combined deuterium-tungsten 

source (Avantes, Netherlands), a special attachment, and fiber optic cables (Ocean Optics, China). 

The surface resistivity of Cu/SiO2 samples was measured at room temperature by a four-point probe method using  

a Keysight 34465A voltmeter immediately after removing the samples from the vacuum chamber. The final resistivity value 

was calculated as the average of 10 independent measurements for each sample. 

RESULTS AND DISCUSSION 

Copper films with a thickness ranging from 6 nm to 100 nm, depending on the process conditions, were prepared by 

magnetron sputtering. The deposition rates from 35 nm/min to 150 nm/min were obtained by varying the sputtering 

parameters. As can be seen from Table 2, the rate of Cu film deposition increases with increasing sputtering power and the Ar 

flow rate. Similar tendencies were reported earlier in [26, 32]. 

The samples were structurally characterized by XRD. Fig. 2 shows the XRD patterns of copper films prepared at 

different sputtering power. All the samples exhibited a reflection at ∼43.3° assigned, according to the Inorganic Crystal 

Structure Database (ICSD), to the (111) plane of the copper cubic modification [45]. The absence of CuO or Cu2O peaks 

indicates high purity of the obtained copper layers. The XRD data confirm the formation of crystalline nanoparticles of the 

fcc copper phase orientated predominantly in the (111) direction [46]. The position of the diffraction peak of copper 

nanoparticles agrees well with the data reported earlier by other authors [27, 37, 46]. 

The recorded diffraction peak is broad because of a low crystallinity of the films composed of nanoparticles. The 

width of this peak increases with increasing sputtering power (Fig. 2a). The average size of copper particles was estimated 

from the Debye–Scherrer equation: 

0.9
,

cos
D

λ
=
β θ

 

where D is the crystallite size; λ is the X-ray wavelength; β is the diffraction peak's width at half height; θ is the diffraction 

angle. The coherent scattering regions (sizes of crystalline domain) for the prepared copper films are listed in Table 3. The 

TEM image of copper film (Fig. 2c) shows the top layer of the copper film. The interlayer distance is 2.09 Å, which 

corresponds to the (111) peak of the Cu fcc phase. Fig. 2d shows the EDX mapping of a cross-section of the Si/Cu/epoxy 

layer structure. The thickness of the Cu layer is 50 nm. 

Fig. 3 shows the surface morphology of Cu films prepared at different sputtering power. The grain size on the film 

surface decreases with increasing sputtering power and is accompanied by the broadening of their diffraction peaks. The 

SEM images of all prepared copper films show the same granular surface morphology with a grain size varying from 8 nm to 

20 nm, depending on experimental conditions. 

Table 3 lists the average sizes of crystallites and grains of Cu films estimated from the Debye–Scherrer formula and 

from surface micrographs obtained by XRD and SEM methods. As can be seen, the values obtained by these two methods 

agree well with each other. The crystallite and grain sizes expectedly increase with increasing film thickness. At the same 

time, the crystallite and grain sizes are slightly diminished with increasing power and Ar flow rate. 
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Fig. 2. XRD patterns of Cu films prepared at F(Ar) = 50 cm3/min and different sputtering power (a) and at 
300 W and various Ar flow rates (b). TEM image of copper film (c) and EDX mapping of silicon, copper, and 
oxygen in the Si/Cu/epoxy layer structure (d). 

 

TABLE 3. Crystallite and Grain Sizes of Cu Films of Various Thicknesses  
Obtained under Varied Deposition Conditions 

P, W F(Ar), cm3/min dCu, nm D, nm (XRD) D, nm (SEM) 

100 50 35 11 12 

200 50 30 9 10 

200 50 80 15 17 

300 50 28 8 8 

300 25 28 8 9 

300 100 25 7 8 

300 50 100 20 20 

300 50 62 16 17 

300 50 43 13 14 
 

We also studied the uniformity of copper deposition over the thickness of the formed layers. Fig. 4 shows the cross-

sections of samples prepared by simultaneous deposition of films on three substrates fixed on a holder along a 50 mm long 

line (dashed line in Fig. 1) so that the distances between the centers of the samples shown in Fig. 4a and 4b and in Fig. 4b and  
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CONCLUSIONS 

Ultra-thin copper films characterized by a thickness of 6 < dCu < 100 nm and a homogeneous and fine-grained 

microstructure were grown by magnetron sputtering in argon on quartz glass and Si(100) substrates at room temperature. 

High homogeneity of the formed layers was confirmed by the cross-section SEM images of Cu/Si(100) structures. The XRD 

and TEM data revealed formation of the fcc phase of copper with a predominant orientation in the (111) direction. The grain 

size increased with increasing film thickness and decreased with increasing power and argon flow rate. It was determined that 

optical and electrical properties of ultrathin copper films vary significantly within the studied thickness range. The surface 

resistivity of the films decreases abruptly from 20 nm to 31 nm. As the film thickness increases still further, the resistivity 

gradually decreases and then tends to constant value. The obtained values of optical constants n and k may be useful for the 

design of plasmonic devices based on thin copper films. 
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