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SYNTHESIS, CRYSTAL STRUCTURE  
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The 7-azaindoles derivatives, as a major category of compounds, show a widespread of biological 

activities. The compound 5-bromo-1-tosyl-1H-pyrrolo[2,3-b]pyridine (1) was obtained by one-step 

substitution reaction. In the meantime, the structure of compound 1 was confirmed by 1H NMR, 13C NMR, 

FTIR and X-ray diffraction. The optimized molecular crystal structure was preliminarily determined by 

using density functional theory (DFT) and compared with the X-ray diffraction values. In addition, more 

physical and chemical properties of compound 1 have been studied by further studying the molecular 

electrostatic potential and frontier molecular orbital of compound 1. 

DOI: 10.1134/S0022476623080024 

Keywords: 7-azaindoles derivatives, crystal structure, infrared analysis, density functional theory (DFT). 

INTRODUCTION 

Indazole derivatives have been reported to have anticancer, antiviral, antibacterial, antiprotozoal, antipsychotic, anti-

inflammatory, analgesic and radio sensitizing properties. Nitrogen-containing heterocyclic compounds are widely found in 

nature and in living organisms, and are of great interest in the fields of medicine, agriculture, functional materials and 

chemicals because of their high efficiency, low toxicity, environmental friendliness, and unique biological activity and 

structural diversity [1-4]. Novel molecularly targeted drugs usually have relatively clear targets, mainly acting on key 

molecules and their signal transduction pathways that regulate cell growth and proliferation, which differ greatly between 

normal and tumor cells, and can inhibit the growth of tumor cells while reducing the effect on normal cells, thus increasing 

the selectivity to tumors and reducing the toxicity to normal tissues. Among them, 7-azaindoles can inhibit the activity of 

various proteases in pharmacological effects, and have anticancer, antiviral, and other effects [5-8]. As widely studied 

intermediates of C3 and C5-substituted 7-azaindoles derivatives, 5-bromo-1-tosyl-1H-pyrrolo[2,3-b]pyridine (1) is available 

at the C3 position via Negishi reaction, Suzuki cross-coupling reaction, and at the C5 position via Buchwald-Hartwig  
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Fig. 1. Crystal structure (a) and DFT optimized structure of compound 1 (b) and their overlap figure (c) (green: 
crystal structure; pink: DFT optimized structure) (see the electronic version). 

 

coupling, Suzuki-Miyura coupling, which can be further modified to develop novel 7-azaindole derivatives. In addition, the 

synthesis method of the compound reported so far is to react under strong bases such as potassium hydroxide, sodium 

hydroxide and sodium hydroxide, while the method used in this paper is based on triethylamine and carried out under the 

condition of catalyst 4-dimethylaminopyridine (DMAP). The advantages of this method are mild conditions, simple post-

treatment and high yield of the target compound, so it is suitable for industrial production. It is understood that the melting 

point of the measured substance can qualitatively identify the purity of the measured substance. The closer the melting point 

of the measured substance is to its standard melting point, the purer the substance will be. So we determined the melting point 

of compound 1. The melting range of compound 1 reported in the present literature is between 140-141 °C, while the melting 

point measured in this experiment is 138-140 °C, which is consistent with the melting range reported in the literature [9]. 

In this paper, the target product 5-bromo-1-[(4-methylphenyl)sulfonyl]-1H-pyrrolo[2,3-b]pyridine was synthesized 

by a one-step substitution reaction (Fig. 1) using 5-bromo-7-azaindole as the starting material, based on the principles of 

collocation, local modification, bioelectronic equipartition and bioequivalence, while preserving the mode of action of the 

pharmacophore. The structure was confirmed by FTIR, hydrogen spectroscopy, carbon spectroscopy, NMR spectroscopy and 

mass spectroscopy. The dominant conformation was obtained by density functional theory (DFT) calculations using 

Gaussian09 software package in B3LYP/6-311+G(2d,p) mode [10, 11]. Crystallographic and conformational analysis of 

compound 1 and comparison of the structure of X-ray single-crystal diffraction with the DFT-optimized structure revealed 

that the structure of the title compound 1 is indeed identical to the single-crystal structure determined by experiment. In order 

to reveal the pharmaceutical aspects of 5-bromo-1-[(4-methylphenyl)sulfonyl]-1H-pyrrolo[2,3-b]pyridine, we also 

investigated the physicochemical characteristics, molecular electrostatic potential and frontier molecular orbitals of the title 

compound by DFT. 

EXPERIMENTAL 

General remarks 

All the experimental materials used, including chemicals and reagents, were commercial suppliers and were used 

without further purification. The default TMS was an internal standard, and 13C and 1H NMR spectra (400 MHz) in DMSO-d6 

solvent were recorded on a JEOL-ECX NMR spectrometer. Mass spectrometry studies were performed on the Agilent 

Technologies 1100 organic mass spectrometer. The UV study was performed on a UV spectrophotometer (Shanghai Yuanxi 

Instrument Co., Ltd.). The IR spectra of compound 1 were recorded in the 4000-400 cm–1 regions on the Bruker IFS-55V IR 

spectrometer (Bruker, Germany). X-ray diffraction data were recorded on a Bruker Apex II X-ray diffractometer and 

collected using graphite monochromatic Kα radiation (λ = 0.71073 Å). Compound 1 was synthesized by one step, and the 

reaction was monitored by thin layer chromatography. 
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TABLE 1. Crystal Data and Parameters for Structure Refinement of Compound 1 

Compound 1 

CCDC 2216318 

Molecular formula C14 H11 Br N2 O2 S 

Molecular weight 351.22 

Crystal system Monoclinic 

Space group P21/c 

a, b, c, Å 11.174(3),  17.298(4),  7.7006(17) 

α, β, γ, deg 90,  108.677(6),  90 

V, Å3 1410.1(6) 

Z 4 

Density (calculated), mg/m3 1.654 

μ, mm–1 3.065 

Radiation λ, Å 0.71073 

Ranges / indices (h, k, l) –13 ≤ h ≤ 13,  –20 ≤ k ≤ 20,  –9 ≤ l ≤ 9 

N(hkl)measured, N(hkl)unique 2499, 1792 

Rint 0.0672 
 

Crystallographic analysis 

Further study on the structural characteristics of the compound can better analyze its various physical and chemical 

properties. Therefore, X-ray diffraction is adopted to study its structure. A ORTEP diagram can clearly and intuitively display 

the structural characteristics of compound 1, as shown in Fig. 1. Among them, we stack the structure of the obtained 

compound with the theoretical calculation results, as shown in Fig. 1, the green part is the obtained crystal, and the pink part 

is the theoretical calculation. The crystal packing in the compound 1 is stabilized by C4–H4⋯O1 and weak C8–H8…π 

interactions, the perpendicular distance of different molecules is 2.765 Å, as shown in Fig. 2. In general, the crystal structure 

shows that the intermolecular packing is stabilized by π–π interactions, C–H…π interactions and C–H…O hydrogen bond. 

The crystallographic and refinement data are shown in Table 1. The experimental and theoretical values of all bond lengths,  

 

 

Fig. 2. The crystal packing of title compound (a); π–π stacking of compound 1 and centroid–centroid distances 
between two molecules (b); the distance of the hydrogen bond of the title compound (c). 
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bond angles and torsion angles as well as the differences between the two values are within reasonable range, as shown in 

Table 2 and Table S1 of Supplementary Materials. 

Conformational determination 

The biological activity and physicochemical properties of a molecule is dramatically affected by its conformation 

[15, 16]. Therefore, what takes a salient role in further study the structure of a compound is the reliable conformational 

analysis. The initial conformation is very important for the study of the compound 1, and this initial conformation is searched 

by means of Spartan08 program [17] with an MMFF [18, 19] molecular mechanics force field. Whereafter, at the level of 

DFT/B3LYP/6-311+G** [20, 21], frequency calculation and geometric optimization of all possible conformations are  

 

TABLE 2. Selected Experimental and Calculated Geometry Parameters for 1 

Bond distance, Å 
Experimental geometry parameters  

for molecule 1 
Calculated geometry parameters  

for conformer 1-2 
Difference 

Br1–C13 1.896(5) 1.91571 0.01971 

C1–C2 1.501(7) 1.50602 0.00502 

C2–C3 1.399(7) 1.39860 –0.0004 

C3–C4 1.373(7) 1.38676 0.01376 

C4–C5 1.385(6) 1.39192 0.00692 

C5–C6 1.393(6) 1.39022 –0.00278 

C5–S1 1.749(5) 1.77431 0.02531 

C6–C7 1.380(7) 1.38821 0.00821 

C8–C9 1.350(7) 1.35973 0.00973 

C8–N1 1.392(5) 1.39501 0.00301 

C9–C10 1.436(6) 1.43396 –0.00204 

C10–C14 1.378(6) 1.39470 0.0167 

C10–C11 1.397(6) 1.41663 0.01963 

C11–N2 1.328(6) 1.32173 –0.00627 

C11–N1 1.392(5) 1.39430 0.0023 

C12–N2 1.336(6) 1.33217 –0.00383 

C12–C13 1.389(6) 1.39983 0.01083 

C13–C14 1.375(6) 1.38355 0.00855 

N1–S1 1.677(4) 1.72253 0.04553 

O1–S1 1.426(3) 1.44419 0.01819 

O2–S1 1.423(3) 1.43679 0.01379 
 

 

Fig. 3. Stable conformers of compound 1. 



 

1374 

 

TABLE 3. Gibbs Free Energy (G), Relative Gibbs Free Energy (ΔG)#1, and Boltzmann  
Weighting Factor (Pi, %)#2 of the Conformers of Compound 1 

Conformer G, kcal/mol ΔG, kcal/mol Pi, % 

1-1 –3772.436248 0 56.12 

1-2 –3772.436018 0.144326357 43.88 
 

 

 

#1 Related to the most stable conformer. 
#2 Boltzmann weighting factor (Pi, %) based on ΔG. 
 

realized using Gaussian09 software package. On the basis of the relative free energies, it was feasible for us to predicted the 

overall percentage of each conformation in the room-temperature equilibrium mixture. The Gibbs free energy (G), relative 

Gibbs free energy (ΔG = exp(–Gi/RT)) and Boltzmann distribution (Boltzmann weighting factor 

exp( / )
100%

exp( / )
j

Gi RT
Pi

Gj RT

−

= ⋅

−∑
) for different conformers of compound 1 are shown in Table 3. 

There are two relatively stable conformers of the title compound 1 in Fig. 3, which are conformers 1-1 (56.1%), 1-2 

(43.88%), and both of conformers are dramatically existed at room temperature. What the distinctions between the two 

conformers were principally classified into the rotational orientation of the S1–N1. 

A comparison was drawn between the DFT-optimized structure and the crystal structure of the compound 1. The 

crystal conformation obtained using X-ray diffraction, as shown in Table 3 and Table S1, the experimental value of the 

crystal is nearly as same as the calculated value of the conformer 1-2. For example, bond angle C7–C2–C3, C7–C2–C1,  

C3–C2–C1, what the difference between the experimental values of crystal structure and the calculated values of conformer 

1-2 are 0.6, –0.8, –0.03. Thus, as expected, the crystal conformation offered by X-ray diffraction is as consistent as the result 

of the conformer 1-2 which was calculated by DFT. 

Not only the hydrogen bonds but the π–π stacking interactions were formed the molecular packing of the crystal 

structure of the compound 1, as clearly shown in Fig. 3. Hydrogen bonds, similar to the X–H⋯Y, can be formed between  

a hydrogen atom and two other atoms that are more electronegative but have smaller atomic radius. Hence, there is an inter-

molecular hydrogen bonding: C4–H4…O1, which was found in the title compound 1 and played an extremely crucial part in 

stabilizing the molecule (Table 4). Except for the aforementioned interactions, what worth noting is that weak π–π stacking 

interactions have better ability to stabilize structures, including the distance between the ring formed by Cg1 and C1, between 

the ring formed by Cg1 and C1, between the ring formed by Cg1 and C2, as well as between the ring formed by Cg2 and C1, 

as a result, the perpendicular distance of two rings of two molecules respectively are dCg–Cg = 3.851 Å, dCg–Cg = 3.851 Å,  

dCg–Cg = 3.660 Å and dCg–Cg = 3.660 Å (Fig. 3). The detailed information of the title compound hydrogen bonds is listed in 

Table 4. 

MEP 

The B3LYP/6-311+G(2d,p) method was selected to investigate the molecular electrostatic potential of the conformer 

1-2 (same as the crystal structure). Because it indicated the information about the intermolecular interaction region of the title 

compound 1, which was great help to further understand the compound 1. In the MEP map, as shown at the surface of the  

 

TABLE 4. Hydrogen-Bond Geometry of Compound 1 

D–H…A d(D–H), Å d(H…A), Å d(D…A), Å ∠(D–H…A), deg 

C4–H4…O1 0.93 2.56 2.922(6) 103 
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Fig. 4. Molecular electrostatic potential map of 
conformer 1-2. 

 
map, different colors suggest the different electrostatic potentials. And the underlying increases in the order of 

red < orange < yellow << green < blue. The color code of the maps in the range –5.0 e–2 (deepest red) to 5.0 e–2 (deepest blue) 

in title molecule surface, where red color denotes the electron rich area and blue region indicates electron deficient region. As 

shown in Fig. 4, The O1 and O2 atom in the 5-bromo-1-tosyl-1H-pyrrolo[2,3-b]pyridine as well as the N1 and N2 atoms in 

the conformer 1-2 are surrounded by negative charges, which indicate some possible nucleophilic attack sites. Besides, the  

H atom of the C4 atom, C5 atom and the C6 are located on the positive charge regions. 

FMOs 

Frontier molecular orbitals investigation invariably plays an extremely important role in reactive prediction [22, 23]. 

As an electrons donor, on the one hand, the highest occupied molecular orbital (HOMO) is always related to potential 

electron delocalization directly. Indeed, the ability of charges transfer revealed from the energy of HOMO. On the other hand, 

the lowest unoccupied molecular orbital (LUMO) manifests an area where electrons can be accepted, and the energy of 

LUMO is regarded as electron affinity. What the energy of band gap point to the energy difference between this two 

important FMOs which implies the stability of molecular structure. 

As a high-efficiency method to further investigate the chemical stability of conformer 1-2, the B3LYP/6-

311+G(2d,p) was selected to calculate the energies of the highest occupied molecular orbital (HOMO), the lowest unoccupied 

molecular orbital (LUMO), and their orbital energy gap were calculated. The pictorial illustration of the frontier molecular 

orbitals (FMOs) and their respective positive and negative regions represented by red and green colors are shown in Fig. 5. 

The values of LUMO and HOMO were –1.7374 eV and –6.7378 eV, respectively. The value of the energy separation 

between the HOMO and LUMO was 5.004 eV for conformer 1-2. The large HOMO–LUMO energy gap means high 

excitation energy of the excited state, good chemical stability and large hardness for the calculated conformer. In addition, the 

ionization energy and electron affinity can be expressed as: I = –EHOMO = 6.7378 eV, A = –ELUMO = 1.7374 eV. The hardness, 

which can be denoted as: η = (I – A)/2, indicates the resistance toward the deformation of the electron cloud of chemical 

systems under small perturbation encountered during chemical process [24-26]. Therefore, the hardness of title compound 1 

is 2.5002. 

Ultraviolet-visible spectral analysis 

The experimental procedure of a 5 ppm concentration in the methanol was recorded. The experimental and 

theoretical UV-Vis spectra of compound 1 were relatively analyzed, as shown in Fig. 6, and the theoretical spectrum of 

compound 1 shifted by 34 nm to a higher wavelength agrees well with the experimental spectrum. For compound 1, the 

experimental spectra showed a strong absorption at 222 nm and a weak absorption at 241 nm and 291 nm. The strong band is  
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