
0022-4766/23/6407-1296 © 2023 by Pleiades Publishing, Ltd. 1296 

ISSN 0022-4766, Journal of Structural Chemistry, 2023, Vol. 64, No. 7, pp. 1296-1304. © Pleiades Publishing, Ltd., 2023. 

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 7, 113295. 

SYNTHESIS, STRUCTURE, AND PROPERTIES  

OF POTASSIUM fac-TRICHLOROTRINITROIRIDATE(III)* 
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Potassium salt of the iridium(III) chloronitro complex fac-K3[Ir(NO2)3Cl3] is obtained in the interaction of 

the iridium(III) trinitrotriaqua complex with potassium chloride in an aqueous  solution. The salt structure 

is analyzed by single crystal X-ray diffraction. Crystallographic data: a = 7.3460(3) Å, b = 12.9904(5) Å, 

c = 13.1841(6) Å, β = 93.924(1)°, space group P21/с, Z = 4, ρcal = 3.026 g/cm3. In the crystal structure, 

molecules of the [Ir(NO2)3Cl3]
3– complex anion having a distorted octahedral geometry (Ir–N = 2.02-

2.04 Å, Ir–Cl = 2.37-2.38 Å) are arranged in layers perpendicular to the с axis. Spectral characteristics (IR, 

Raman, UV-vis) of the salt are determined together with its transformations during thermolysis in the inert 

atmosphere. Experiments are performed on sorption of the [Ir(NO2)3Cl3]
3– complex on nickel hydroxide, 

which model iridium loss during the precious metal refining process by the precipitation scheme. 

DOI: 10.1134/S0022476623070132 

Keywords: iridium, nitro complexes, chloro complexes, aqua complexes, single crystal X-ray diffraction 

analysis, spectroscopy, sorption. 

INTRODUCTION 

Iridium(III) chloronitro complexes have been known as intermediate forms of iridium existence during nitration of 

hexachloroiridates in refining of platinum group metals (PGMs). In the course of  separation of these metals, iridium, 

rhodium, and ruthenium chloro complexes transform into soluble salts of anionic nitro complexes [M(NO2)6]
3– for Rh, Ir and 

[Ru(NO)(NO2)4(OH)]2–, with accompanying non-precious metals (Fe, Ni, Cu) being precipitated as respective hydroxides 

and hydrated oxides (so-called hydrate precipitates of nitration). For the final PGM nitration products it is shown that their 

co-precipitation with hydrate precipitates can result in the loss of a part of precious metals [1-3]. At the same time, iridium 

kinetic inertness contributes to the slow replacement of chloro ligands by nitrite ones even at elevated temperatures, while 

mixed-ligand iridium chloronitro complexes long dominate in solution during nitration [4, 5]. This is additionally 

complicated by the extreme kinetic inertness of some mixed-ligand forms, which seems to be due to trans-effects, as shown 

for trans-[Ir(NO2)4Cl2]
3– [6]. Captures of these PGM forms of different structures by hydrate precipitates have practically  
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been undescribed in the literature. The main difficulties in this are the absence of reliable procedures for preparing mixed-

ligand complexes and lack of information about them. 

It was previously shown [7, 8] that fac-[Ir(NO2)3(L)3] complexes, including chloronitro complexes, can be obtained 

by substitution of water in fac-[Ir(NO2)3(H2O)3]. A high lability of this aqua complex is explained by the strong trans-effect 

of nitro ligands and makes it possible to carry out substitution reactions under mild conditions. In this work, we used the 

exclusive reactivity of fac-[Ir(NO2)3(H2O)3] to prepare K3[Ir(NO2)3Cl3]⋅H2O salt containing iridium trichlorotrinitro complex 

of the facial structure. We present the results of studying this compound by spectral techniques and the crystal structure of the 

compound determined by single crystal X-ray diffraction (XRD). 

EXPERIMENTAL 

As the starting compound for the synthesis of iridium complexes we used hydrated iridium trichloride (Krasnoyarsk 

Plant of Non-Ferrous Metals, 54 wt.% iridium), from which Na3[Ir(NO2)6] was obtained by hydrothermal treatment in  

an autoclave with a NaNO2 solution described in [6]. To nitrate iridium chloride we applied NaNO2 (cp grade). Water-

insoluble salt (NH4)3[Ir(NO2)6] was obtained by mixing Na3[Ir(NO2)6] and NH4Cl solutions according to the procedure from 

[9]. Nickel hydroxide for the sorption experiment was prepared by precipitation from the aqueous nickel nitrate solution (cp 

grade). 

Preparation of fac-[Ir(H2O)3(NO2)3] solutions. A portion of the (NH4)3[Ir(NO2)6] salt (502 mg) was suspended in 

6.25 mL of 0.3 М HNO3 in a thick-wall glass autoclave with a Teflon screw plug with a rubber seal. The closed autoclave 

was heated for 1 h at 130 °C in an oil bath. After cooling the obtained solution was directly used for the synthesis. According 

to 15N NMR data, the fraction of fac-[Ir(H2O)3(NO2)3] (relative to all iridium forms) was no less than 95% in this solution [8]. 

Preparation of K3[Ir(NO2)3Cl3]⋅H2O. An excess of KCl (1:15) was added to an aliquot of the fac-[Ir(H2O)3(NO2)3] 

solution (obtained by the mentioned procedure) containing 1.5⋅10–4 mol of iridium. The prepared solution was heated at 

60 °С until the complete evaporation of the liquid. Then 5 mL of water were added and the solution was again evaporated. 

Evaporation was repeated three times, after which the obtained mixture was dissolved in 5 mL of water and the solution was 

evaporated to a volume of 2 mL. After cooling the solution, the fac-K3[Ir(NO2)3Cl3]⋅H2O precipitate formed was isolated by 

filtration on a Teflon filter (0.22 µm), washed with a minimum amount of ice water, ethanol and dried in the air flow. The 

yield was 54%. 

IR: ρw(NO2) 640 cm–1; δ(ONO) 839 cm–1; ν(NO2) 1317-1375 cm–1. 

UV-Vis. Electronic absorption spectra of the solutions were recorded at room temperature (23±1 °С) on a SF-102 

spectrophotometer in quartz cuvettes with a 1 cm path length. 

Vibrational spectroscopy. IR spectra of the salt in KBr pellets were measured on a FT-801 (Simex) spectrometer. 

Raman spectra were recorded on a LabRAM HR Evolution (Horiba) spectrometer with embedded argon (Ar+) laser excitation 

at a wavelength of 514 nm (0.2 mW). 

TGA. The thermogravimetric analysis (TGA) was carried out on a TG 209 F3 Tarsus® NETZSCH apparatus in the 

helium atmosphere at gas flow rate of 30 mL/min. We used Al2O3 crucibles with a heating rate of 10 deg/min. The 

experimental data were processed using the standard Proteus analysis program package [10]. 

NMR. 
15N NMR spectra were measured on a Bruker AVANCE 500 (AV500) spectrometer at room temperature. 

The ammonium nitrate solution was used as the standard. 

Powder XRD. The powder XRD analysis of polycrystalline samples was performed on a Bruker D8 Advance 

diffractometer with a linear energy-discriminating LynxEye XE T detector at room temperature with CuKα radiation 

(dynamic primary slit with a divergence of 9 mm, 3.0 mm knife collimator, 2.5° Soller slits, 0.5 s–1 substrate rotation) in the 

Bragg–Brentano geometry. The sample was deposited on a polycarbonate substrate as a ∼0.1 mm layer of the suspension in  
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TABLE 1. Crystallographic Characteristics and XRD Experiment Parameters 

Stoichiometric formula Cl3H2IrK3N3O7 

Molecular weight, g/mol 571.90 

Crystal dimensions, mm 0.29×0.07×0.05 

Space group P21/с 

Z 4 

a, b, c, Å 7.3460(3),  12.9904(5),  13.1841(6) 

β, deg 93.924(1) 

V, Å3 1255.18(9) 

ρcal, g/cm3 3.026 

Absorption coefficient, mm–1 12.292 

F(000) 1056 

θ range of data collection, deg 5.558-55.11 

h, k, l index ranges –9 ≤ h ≤ 9,  –16 ≤ k ≤ 16,  –17 ≤ l ≤ 17 

Number of reflections measured / independent 10682 / 2902 

Rint 0.0339 

Refinement technique Full-matrix LSM on F2 

Number of reflections / restraints / parameters 2902 / 0 / 151 

S-factor on F2 1.057 

R-factor (I > 2σ(I)) R1 = 0.0200,  wR2 = 0.0439 

R-factor (all data) R1 = 0.0225,  wR2 = 0.0448 

Δρmax, Δρmin, e/Å3 0.79,  –0.88 

CCDC No. 2255760 
 

heptane. The XRD pattern was recorded in the 2θ angle range of 3-70° with an integration step of 0.01° and the total point 

acquisition time of 19 s. 

Single crystal XRD analysis. The XRD experiment for the K3[Ir(NO2)3Cl3]⋅H2O salt crystals was carried out at 

293 K on a four-circle Bruker Nonius X8 Apex CCD diffractometer equipped with an area CCD detector, Mo radiation, and  

a graphite monochromator. The structure was solved by a direct method and refined in the anisotropic-isotropic (for Н) 

approximation. Reflection intensities were measured by ω- and ϕ-scanning of narrow (0.5°) frames. Absorption correction 

was applied using the SADABS program [11]. The structure was solved using SHELXT [12] and SHELXL [13] programs. 

Crystallographic characteristics of K3[Ir(NO2)3Cl3]⋅H2O salt and XRD experiment parameters are summarized in 

Table 1. 

RESULTS AND DISCUSSION 

The starting compound in the synthesis of the trichlorotrinitro complex was a solution of the fac-[Ir(NO2)3(H2O)3] 

molecular complex obtained by acid-induced hydrolysis of (NH4)3[Ir(NO2)6] salt under hydrothermal conditions. As noted 

before, the lability of aqua ligands in the fac-[Ir(NO2)3(H2O)3] complex enables their easy substitution with the formation of 

various mixed-ligand iridium nitro complexes. In this case, the heating of the solution with an excess of potassium chloride 

leads to chloride ion substitution for aqua ligands. The K3[Ir(NO2)3Cl3]⋅H2O salt formed is well soluble in water (23.8 g/L). 

Along with two signals corresponding to the NO2–Ir–Cl coordinate, the 15N NMR spectrum of the mother liquor (Fig. 1) 

demonstrates a signal corresponding to the NO2–Ir–OH2 coordinate. The analysis of the integrated intensity of the signals 

allows the interpretation of the observed spectrum as a superposition of signals of [Ir(NO2)3Cl3]
3– and [Ir(H2O)(NO2)3Cl2]

2– 

complexes. The mentioned factors result in a low yield of the product (54%). 
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length is 2.06 Å, whereas in K3[IrCl6]⋅H2O salt [14], the shortest bond is 2.33 Å. All N–O bonds are within 1.20-1.24 Å, with 

disorder over the oxygen atom being observed for one of the nitro ligands. The О32 atom is found to be in two positions with 

the equal probability (marked as О32А and О32B). Hydrogen bonds with a water molecule can also be noted for this oxygen 

atom. The O–H–O contact length is 3.20 Å for the О32А position and 3.05 Å for О32В. Table 2 lists more detailed bond 

lengths and bond angles of the complex [Ir(NO2)3Cl3]
3– anion. 

In the cell, the complex [Ir(NO2)3Cl3]
3– anions are arranged in layers along the planes perpendicular to the с axis. 

Three crystallographically independent K+ cations (K1, K2, K3) are distinguished in the structure. The nearest environment 

of each complex anion contains six potassium cations at a distance from the central atom ranging from 4.11 Å to 4.52 Å 

(network of the shortest distances embracing all potassium and iridium atoms). There is one [Ir(NO2)3Cl3]
3– anion in the 

nearest environment of K1 cations, two complex anions in the environment of K2 cations, while the K3 cation is surrounded 

by three anions. The coordination environment of potassium cations (c.n. = 8 for all cations) is composed of oxygen atoms 

(K–O from 2.7 Å) and chloride ligands (K–Cl from 3.2 Å) from the composition of [Ir(NO2)3Cl3]
3– anions as well as oxygen 

atoms of crystal water for K1 and K2 anions. 

The IR spectrum (Fig. 3(1)) of the salt in the wavenumber range of 4000-800 cm–1 demonstrates intense bands 

corresponding to stretching and rotational vibrations of crystal water (3560 cm–1, 1612 cm–1) and nitro ligands (1317-

1375 cm–1, 839 cm–1, 640 cm–1). Similar bands are also observed in the Raman spectrum of the compound (Fig. 3(2)). In the 

long-wave range of the Raman spectrum there are the absorption bands corresponding to metal–ligand stretching vibrations. 

The comparison of this spectrum with the spectrum of Na3[Ir(NO2)6] salt (Fig. S3, Supplementary materials) allows us to 

assign the bands at 358 cm–1 and 372 cm–1 to Ir–Cl vibrations, while the signals near 326 cm–1 can be assigned to Ir–N 

stretching vibrations. It should be noted that the position of the ν(Ir–Cl) band is close to that observed for [IrCl2(py)4]Cl salts 

[15]. 

According to the TGA data (Fig. 4a), thermal decomposition of the salt begins at 70 °C, and first of all, results in the 

removal of crystal water molecules. Further decomposition consists of one stage, is accompanied by the loss of three nitro 

ligands, and leads to the formation of final products: iridium oxide IrO2 and KCl (theoretical residual weight 80.86%). 

Weight losses in the TGA curve agree with the mass spectrometric data for gases released during thermolysis (Fig. 4b): the 

first step of decomposition is accompanied by water release to the gas phase; on the second step, NO is released at about 

400 °C. 

The UV-vis spectrum of the aqueous solution of K3[Ir(NO2)3Cl3]⋅H2O salt (Fig. 5) exhibits a broad shoulder at 

280 nm, which is located at the edge of an intense absorption band related to electronic transitions in the nitro ligand. The  

 

TABLE 2. Selected Bond Lengths and Angles of the Structure of the K3[Ir(NO2)3Cl3]⋅H2O Compound 

Bond Length, Å Angle Value, deg Angle Value, deg 

Ir1–Cl3 2.376(9) Cl3–Ir1–Cl1 87.92(3) N3–Ir1–Cl1 93.8(1) 

Ir1–Cl2 2.368(1) Cl2–Ir1–Cl3 88.94(4) N3–Ir1–N2 90.5(1) 

Ir1–Cl1 2.384(1) Cl2–Ir1–Cl1 88.04(4) O12–N1–Ir1 120.8(2) 

Ir1–N1 2.021(3) N1–Ir1–Cl3 88.81(9) O12–N1–O11 118.1(3) 

Ir1–N2 2.038(3) N1–Ir1–Cl2 92.38(9) O11–N1–Ir1 121.1(3) 

Ir1–N3 2.032(3) N1–Ir1–Cl1 176.69(9) O22–N2–Ir1 123.0(3) 

N1–O12 1.211(4) N1–Ir1–N2 90.9(1) O22–N2–O21 117.7(4) 

N1–O11 1.230(4) N1–Ir1–N3 89.5(1) O21–N2–Ir1 119.0(3) 

N2–O22 1.206(4) N2–Ir1–Cl3 92.52(9) O31–N3–Ir1 122.4(3) 

N2–O21 1.210(4) N2–Ir1–Cl2 176.48(9) O31–N3–O32B 115.1(8) 

N3–O31 1.196(5) N2–Ir1–Cl1 88.81(9) O31–N3–O32A 115.8(8) 

N3–O32B 1.21(1) N3–Ir1–Cl3 176.5(1) O32B–N3–Ir1 118.1(7) 

N3–O32A 1.24(1) N3–Ir1–Cl2 88.1(1) O32A–N3–Ir1 119.9(7) 
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reaches 5 g/L, the sorption curve becomes a plateau, which corresponds to the practically complete disappearance of the 

absorption band. This behavior indicates the rapid sorption of the iridium complex by nickel hydroxide, while the sorption 

capacity estimate varies near 200 mg/g. Thus, iridium losses in hydrate precipitates can be tens of grams per precipitate 

kilogram because of this mechanism. 

CONCLUSIONS 

The synthesis and study of fac-K3[Ir(NO2)3Cl3]⋅H2O salt are presented. A solution of the fac-[Ir(NO2)3(H2O)3] 

molecular complex was used as a source of the fac-{Ir(NO2)3} coordination synthon, which was previously noted as  

a convenient starting compound to obtain mixed-ligand iridium complexes with this coordination core. The main interest in 

iridium chloronitro complexes is associated with their role in the refining of this metal. In particular, in this work, we report 

the first results of studying sorption of [Ir(NO2)3Cl3]
3– by nickel hydroxide, which models the possible mechanism of iridium 

losses in the industrial cycle. Further more detailed exploration of this process will help understand its kinetic nuances and 

expand the number of objects to other iridium chloronitro complexes. 
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