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HETEROLEPTIC LANTHANIDE (La, Pr, Nd)  

METAL-ORGANIC FRAMEWORKS BASED  
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Novel heteroleptic lanthanum, praseodymium, and neodymium metal-organic coordination polymers 

(MOCPs) containing two types of anionic organic ligands as organic units are prepared by a two-step 

solvothermal synthesis in N,N-dimethylformamide. Framework derivatives with the [Ln2(CA)(fdc)2⋅4DMF]⋅ 

⋅2DMF composition are prepared (Ln = La, Pr, Nd; CA is a dianion of the chloranilic acid; fdc is a dianion 

of the 2,5-furandicarboxylic acid; DMF is N,N-dimethylformamide). The structure of the compounds is 

studied by XRD (CCDC CIF file No. 2251285 (I), 2251286 (II), 2251287 (III)). 

DOI: 10.1134/S0022476623060100 

Keywords: chloranilic acid, metal-organic coordination polymers, 2,5-furandicarboxylic acid, redox-active 

ligand, X-ray diffraction analysis, solvothermal synthesis. 

INTRODUCTION 

Metal-organic coordination polymers (MOCPs) are a specific class of micro- and mesoporous solids that have been 

widely studied for the past decades [1]. Their structural and functional diversity opens up broad prospects for applications in 

the fundamental and applied science [2]. Metal-organic frameworks (MOFs) have a 3D structure with some porosity and are 

therefore classified as a special subclass of MOCPs. 

The structure and properties of MOCPs are determined both by the metal ions and by the type of organic ligands. 

Di-, tri- , and tetracarboxylic acids are most commonly used as ligands to build coordination polymers [3, 4]. Other promising 

linkers for the construction of coordination polymers are redox-active anilate ligands, 2,5-dihydroxy-1,4-benzoquinone 

derivatives, containing various substituents in positions 3 and 6 (X = H, Cl, Br, I, CN, etc.) [5-7]. Being connected with 

metals, these ligands can exist in four different redox states (Scheme 1). Most of the currently known MOCPs include anilate 

ligands in the dianionic state [6]. 

The use of several different ligands in a MOCP allows one to obtain compounds encompassing properties of 

different systems, thus paving the way to the preparation of multifunctional materials. A very promising direction in the 

chemistry of coordination polymers is the synthesis of heteroleptic compounds containing anionic ligands of various types in 

the composition of their unit [8-17]. Thus, a group of Novosibirsk researchers obtained mixed-ligand zinc derivatives (NIIC-

20-G) based on dicarboxylic acids and dihydric alcohols [11-13, 16]. The authors showed that the main adsorption  
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Synthesis of [La2(CA)(fdc)2⋅4DMF]⋅2DMF (I⋅2DMF), [Pr2(CA)(fdc)2⋅4DMF]⋅2DMF (II⋅2DMF) and 

[Nd2(CA)(fdc)2⋅4DMF]⋅2DMF (III⋅2DMF). 

A mixture of one of the lanthanide salts (LaCl3⋅7H2O for I⋅2DMF, PrCl3⋅6H2O for II⋅2DMF, NdCl3⋅6H2O for 

III⋅2DMF, 0.04 mmol), 2,5-furandicarboxylic acid (0.08 mmol), and chloranilic acid (0.04 mmol) was ground in a mortar for 

better mixing of the initial materials. The resulting mixture was heated for 24 h at 80 °C in DMF (5 mL) in a sealed glass 

ampoule; then the temperature was increased up to 130 °C and heated for another 24 h. The isostructural MOFs I–III were 

obtained as purple crystalline products that were collected on a glass filter and washed with 3 mL of DMF. When dried in air, 

the [Ln2(CA)(fdc)2·4DMF]⋅2DMF compounds rapidly lose their crystallinity due to the gradual release of the “guest” DMF 

solvent from the MOF pores. For the elemental analysis, IR spectroscopy, and TGA experiments, dried samples of MOFs I–

III containing no “guest” solvent were used. 

Yield of MOF I: 72%. IR spectrum (ν, cm–1): 1658 s (–C=O (DMF)), 1565 s (group –C(O)O 2,5-furandicarboxylic 

acid), 1487 s (–CO - CA2–), 1379 s (–CO - CA2–), 1295 m, 1228 w, 1200 w, 1154 w, 1112 s, 1104 s, 1066 m, 1020 s, 967 m, 

867 m, 832 s, 823 s, 789 s, 976 s, 670 s, 625 m, 598 s, 576 s, 520 w, 497 s. Found (%): C 33.01, H 3.12, N 5.57; for 

C30H32La2Cl2N4O18 calculated (%): C 33.20, H 2.97, N 5.16. 

Yield of MOF II: 70%. IR spectrum (ν, cm–1): 1657 s (–C=O (DMF)), 1565 s (–C(O)O - fdc2–), 1490 s (–CO - CA2–), 

1380 s (–CO - CA2–), 1294 m, 1254 m, 1227 w, 1201 w, 1166 w, 1154 w, 1110 s, 1103 s, 1065 m, 1022 m, 991 s, 966 m, 866 

m, 840 s, 823 s, 788 s, 679 s, 670 s, 625 m, 598 s, 576 s, 522 w, 498 s. Found (%): C 32.60, H 3.04, N 5.62; for 

C30H32Pr2Cl2N4O18 calculated (%): C 33.08, H 2.96, N 5.14. 

Yield of MOF III: 63%. IR spectrum (ν, cm–1): 1652 s (–C=O (DMF)), 1565 s (–C(O)O - fdc2–), 1490 s (–CO - 

CA2–), 1378 s (–CO - CA2–), 1292 m, 1252 m, 1219 w, 11492 w, 1110 s, 1104 s, 1089 w, 1063 w, 1018 w, 994 m, 963 w, 866 m, 

842 s, 823 s, 887 s, 678 s, 669 s, 624 m, 597 s, 577 s, 521 w, 495 s. Found (%): C 32.42, H 3.08, N 5.58; for 

C30H32Pr2Cl2N4O18 calculated (%): C 32.88, H 2.94, N 5.11. 

XRD. The XRD studies of MOCPs I–III were conducted on a Bruker D8 Quest diffractometer (MoKα radiation, ω-

scanning, λ = 0.71073 Å, T = 100.0(2) K). The measurements and integrations of experimental intensities, absorption 

corrections, structure determination and refinements were carried out using APEX3 [31], SADABS [32], and SHELX [33] 

packages. The structures were determined using the dual-space algorithm [34] and refined by full-matrix least squares on 2

hkl
F  

anisotropically for the non-hydrogen atoms. All hydrogen atoms in I–III were calculated geometrically and refined 

isotropically with fixed thermal parameters U(H)iso = 1.2U(C)eq (U(H)iso = 1.5U(C)eq for methyl groups). 

The topology of coordination polymers was analyzed using the ToposPro software [35]. 

The structures were deposited with the Cambridge Crystallographic Data Centre (CCDC numbers 2251285 (I), 

2251286 (II), 2251287 (III)) and are available at ccdc.cam.ac.uk/structures. 

RESULTS AND DISCUSSION 

Heteroleptic lanthanide MOFs [Ln2(CA)(fdc)2⋅4DMF]⋅2DMF (Ln = La (I⋅2DMF), Pr (II⋅2DMF), Nd (III⋅2DMF)) 

were prepared by a previously developed technique [9] using two-stage solvothermal synthesis (Scheme 2). At the first stage, 

the reaction mixture was heated up to 80 °C for 24 h; at the second stage, the thermostat temperature increased to 130 °C, and 

the reaction mixture was heated for another 24 h. As a result, purple crystalline mixed-ligand MOCPs were obtained. The 

purple color of the crystals is not unusual for such derivatives and is typical for compounds containing anilate ligands in the 

dianion state [14]. 

The structure of I⋅2DMF, II⋅2DMF, and III⋅2DMF was determined by XRD. The I⋅2DMF, II⋅2DMF, and III⋅2DMF 

MOCPs are isostructural, so their structure was considered on the example of the I⋅2DMF derivative. The molecular structure 

of I⋅2DMF is shown in Fig. 1. The crystal data and parameters of XRD experiments for isostructural MOCPs 

[Ln2(CA)(fdc)2⋅4DMF]⋅2DMF (La, Pr, Nd) are summarized in Table 1; the selected bond lengths are listed in Table 2. 
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TABLE 1. Crystal Data, Experimental Parameters, and Structure Refinements for I⋅2DMF, II⋅2DMF, III⋅2DMF 

Parameter I⋅2DMF II⋅2DMF III⋅2DMF 

Empirical formula C30H32ClLaN4O18,  
2C3H7NO 

C30H32ClPrN4O18,  
2C3H7NO 

C30H32ClNdN4O18,  
2C3H7NO 

M 1231.51 1235.51 1242.17 

T, K 100.0(2) 100.0(2) 100.0(2) 

Crystal system Monoclinic 

Space group P21/c 

a, b, c, Å 12.4745(4), 11.1476(4),  
16.9373(6) 

12.3434(7), 11.1718(7),  
16.8162(10) 

12.3034(6), 11.2273(8),  
16.7297(11) 

β, deg 94.7390(10) 94.337(2) 94.172(5) 

V, Å3 2347.26(14) 2312.3(2) 2304.8(3) 

Z 2 2 2 

ρcalc, g/cm3 1.742 1.775 1.790 

μ, mm–1 1.991 2.281 2.427 

θmin / θmax, deg 2.67 / 27.95 2.19 / 25.03 2.456 / 25.96 

Reflections collected /  
     unique (I > 2σ(I)) 

22288 / 4798 21394 / 3420 21798 / 4505 

Rint 0.0370 0.0569 0.0563 

S(F2) 1.038 1.039 1.085 

R1 / wR2 (F
2 > 2σ(F2)) 0.0253 / 0.0553 0.0327 / 0.0542 0.0386 / 0.0924 

R1 / wR2 (all data) 0.0340 / 0.0527 0.0420 / 0.0561 0.0512 / 0.0999 

Δρmax / Δρmin, e/Å3 0.82 / –0.99 1.28 / –1.15 2.13 / –0.89 
 

solvate DMF molecules per each MOCP unit. The MOCP 2D layers in I⋅2DMF, II⋅2DMF, and III⋅2DMF are built due to the 

μ2–κ
1:κ2 bonds between free COO groups of the fdc2− dianions and metal cations of the neighboring units (Fig. 2b). Finally, 

the chloranilic acid dianions “crosslink” the layers into a 3D non-interpenetrating structure with the xah topology [35-37] 

(Fig. 2c). 

MOCPs with anilate [38-40] and dicarboxylate [41] ligands can show different types of coordination for the metal 

atom; most common of them are shown in Scheme 3 on the example of chloranil and 2,5-furandicarboxylic acids. The types 

of ligand coordination in I⋅2DMF, II⋅2DMF, and III⋅2DMF are shown in the scheme by rectangles. 

The structure of chloranilic acid dianions in I⋅2DMF, II⋅2DMF, and III⋅2DMF can be represented as two 

delocalized π-electronic OCCCO systems connected by single C–C bonds. The lengths of single C–C bonds range from 

1.537(3) Å to 1.546(4) Å (Table 2), while other C–C distances of the six-membered rings fall within a wider range of 

1.382(7)-1.408(7) Å. The lengths of the C–O bonds (1.249(4)-1.257(5) Å) are intermediate between single and double C–O 

bonds [42]. 

As already shown, dicarboxylate ligands in all derivatives act as bridging μ2–κ
1:κ1 and μ2–κ

1:κ2 ligands connecting 

four Ln3+ ions. The La–O (2.509(2)-2.695(2) Å). Pr–O (2.462(2)-2.652(2) Å), and Nd–O (2.462(2)-2.632(2) Å) bonds fall 

within the intervals typical for La, Pr, and Nd MOCPs with 2,5-furandicarboxylic acid [43, 44]. 

The pores in the crystal structures of I⋅2DMF, II⋅2DMF, and III⋅2DMF have a volume of 22% and are occupied by 

DMF guest molecules (Fig. 3) [45]. The crystal lattice destroys when the guest molecules are released and the pores are 

emptied. For example, when stored without mother solvent in air for 24 h, the I⋅2DMF, II⋅2DMF, and III⋅2DMF samples 

lose their crystallinity to the extent that their powder XRD spectra show no distinct diffraction peaks. The elemental analysis 

and TGA data confirm the absence of DMF guest molecules in the dried samples and show agree well with the results for the 

simplest formula [Ln2(CA)(fdc)2⋅4DMF] (La, Pr, Nd). 

 



 

1075

TABLE 2. Selected Bond Lengths (Å) in I⋅2DMF, II⋅2DMF, III⋅2DMF 

Bond d, Å I⋅2DMF Bond d, Å II⋅2DMF Bond d, Å III⋅2DMF 

La1–O1 2.501(2) Pr1–O1 2.458(2) Nd1–O1 2.442(3) 

La1–O7#4 2.507(2) Pr1–O3 2.473(2) Nd1–O4#1 2.444(3) 

La1–O4#1 2.509(2) Pr1–O4A 2.462(2) Nd1–O7#4 2.452(3) 

La1–O3 2.509(2) Pr1–O7D 2.465(2) Nd1–O3 2.466(3) 

La1–O9 2.543(2) Pr1–O9 2.500(2) Nd1–O9 2.477(3) 

La1–O8 2.553(2) Pr1–O2B 2.534(2) Nd1–O8 2.491(3) 

La1–O2#2 2.568(2) Pr1–O8 2.508(2) Nd1–O2#1 2.524(3) 

La1–O6#3 2.596(2) Pr1–O6C 2.562(2) Nd1–O6#3 2.544(3) 

La1–O7#3 2.695(2) Pr1–O7C 2.652(2) Nd1–O7#3 2.632(3) 

La1–La1#1 4.0713(3) Pr1–Pr1A 4.0044(4) Nd1–Nd1#3 3.9790(5) 

O1–C1 1.257(3) O1–C1 1.255(4) O1–C1 1.257(5) 

O2–C3 1.253(3) O2–C3 1.252(4) O2–C3 1.249(6) 

O3–C4 1.257(3) O3–C4 1.260(4) O3–C4 1.261(6) 

O4–C4 1.256(3) O4–C4 1.257(4) O4–C4 1.258(6) 

O6–C9 1.248(3) O6–C9 1.244(4) O6–C9 1.243(6) 

O7–C9 1.278(3) O7–C9 1.287(4) O7–C9 1.284(5) 

C1–C2 1.389(3) C1–C2 1.388(4) C1–C2 1.382(7) 

C1–C3#2 1.537(3) C1–C3B 1.546(4) C1–C3#2 1.538(6) 

C2–C3 1.400(3) C2–C3 1.391(5) C2–C3 1.408(7) 

C4–C5 1.487(3) C4–C5 1.498(4) C4–C5 1.490(7) 

C5–C6 1.360(3) C5–C6 1.351(4) C5–C6 1.352(6) 

C6–C7 1.420(3) C6–C7 1.420(4) C6–C7 1.416(7) 

C7–C8 1.363(3) C7–C8 1.357(4) C7–C8 1.359(6) 

C8–C9 1.475(3) C8–C9 1.472(4) C8–C9 1.477(6) 
 

 

 

Symmetry operators: #1 –x+1, –y+1, –z+2;  #2 –x+2, –y+1, –z+2;  #3 x, –y+3/2, z+1/2;  #4 –x+1, y–1/2, –z+3/2. 
 

 

Fig. 2. Secondary building unit in I⋅2DMF (a). View of the I⋅2DMF framework along direction (100) (b) and 
(010) (c). Color code: La (cyan), chloranilic acid dianion (red), 2,5-furandicarboxylic acid dianion (blue), DMF 
(gray) (see the electronic version). Thermal ellipsoids are set at a 50% probability level Hydrogen atoms and 
“guest” DMF molecules are not shown. 
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