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INTERACTION OF ATOMIC OXYGEN WITH  
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Adsorption of atomic oxygen on the surface of polycrystalline gold is studied in detail by XPS and TPD 

methods. It is shown that the action of atomic oxygen at initial stages leads to the formation of chemisorbed 

atomic oxygen with the deposition thickness Θ = 0–0.5 monolayers. Increased exposure to atomic oxygen 

leads to the formation of 2D gold oxide. At the maximum oxygen saturation, the calculated oxide layer 

thickness is 3 Å, and its stoichiometry is close to AuO2. The TPD analysis shows that thermal stability of 

adsorbed oxygen is 510 K for the chemisorbed layer and 525 K for the 2D gold oxide.  The structure of the 

2D gold oxide is determined as one layer of gold atoms and two layers of oxygen atoms adsorbed on the 

surface and inside the subsurface layer. The reactivity of adsorbed oxygen is tested by the interaction of CO 

and H2 at room temperature; all the oxygen forms are shown to be active. It is established that the reactivity 

towards CO is 2 orders of magnitude higher than towards H2, suggesting that oxygen species take part in 

the PROX mechanism. 
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INTRODUCTION 

The interest in the use of gold catalysts was initiated by the research by Haruta [1, 2] and has significantly increased 

over the past 20 years [3-12]. Gold-based catalysts are highly active in many processes, particularly in reactions of complete 

[3, 7, 8, 13, 14], selective [15-19], and partial [3, 20, 21] oxidation. To date, the following most important aspects affecting 

catalytic activity of gold have been identified: particle size, nature and morphology of the support, synthesis methods, 

activation treatment, etc. In the field of treatment, numerous works have already been published, and their number is rapidly 

increasing. The mechanism of oxidation is largely determined by oxygen species, so their nature is essential for the 

understanding of reaction mechanisms. 

For many metals employed in catalysis, fundamental studies of oxygen forms on model systems such as single 

crystals, foils, and thin films were carried out many years ago [22-24]. But the states of oxygen on the surface of gold and the 

activity of the latter have not been precisely established, since gold is commonly considered nonreactive in catalytic 

processes [7, 25]. The study of gold oxidation is also complicated by the need of using oxygen activation. There are several 

ways of gold oxidation: gas-phase microwave or high-frequency discharge [26-28], low-temperature UV- and electron-  
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induced oxygen adsorption [29, 30], application of atomic oxygen [31-35], oxygen ion sputtering [36]; oxidation by 

aggressive gases (e.g. ozone) [37-40], magnetron sputtering [41, 42], pulsed laser sputtering in O2 [43]; electrochemical 

oxidation of gold surfaces in acids [44, 45]. All these methods are relatively laborious and lead to different degrees of gold 

oxidation. 

Weakly charged metallic [46-48] gold in δ+ [6, 49] and δ– [50] states or 1+/3+ oxidized gold forms [51] are 

commonly considered as reactive oxygen species. At present, conducting a systematic study of oxygen species on the surface 

of gold, especially at the early stages of gold oxidation, is an urgent task. The main goal of our work is to study initial stages 

of gold surface oxidation by flowing atomic oxygen. This method combines the efficiency of gold oxidation, the softness of 

surface treatment, and good reproducibility of treatment conditions. 

EXPERIMENTAL 

X-ray photoelectron spectroscopy. The experiments were carried out on a VG ESCALAB HP X-ray photoelectron 

spectrometer equipped with analyzer and preparation chambers. After placing a sample in the analyzer chamber, the spectra 

were recorded using the AlKα non-monochromatic X-ray radiation (hν = 1486.6 eV). The source power was 200 W in all 

experiments. The diameter of the X-ray beam was ~ 8 mm. The charge states of gold and oxygen forms in the resulting AuO
x
 

oxide layers were studied by recording narrow spectral regions O 1s and Au 4f with a step of 0.1 eV. Surface contamination 

was controlled by recording high-sensitivity survey spectra. Data processing and spectral analysis (curve fitting, area 

calculation) were carried out by standard graphic programs and by the Calc-XPS program that was previously tested on  

a number of systems [52-55]. When performing component decomposition, the peaks were approximated by a sum of 

Lorentz and Gaussian functions while using background subtraction with the Shirley method. The error of background 

subtraction and component deconvolution did not exceed 2-3%. 

The spectrometer was also equipped with a Q7B quadrupole mass spectrometer (Vacuum Generators) installed in 

the analyzer chamber close to the sample surface to provide a good signal/background ratio in the mass spectra. A total of 18, 

32, 28, and 44 masses were simultaneously recorded in all the TPD experiments. 

Sample preparation. The sample was a 0.2 mm thick polycrystalline gold foil (99.99% purity) with a size of 

12×8 mm. The clean gold surface was prepared by multiple successive cycles of argon ion bombardment and subsequent 

annealing at 923 K in the preparation chamber. The sample was subjected to resistive heating. Its temperature was controlled 

using a platinum:platinum-rhodium thermocouple that was spot welded to the opposite side of the foil. The adsorbed oxygen 

species and AuO
x
 layers were prepared by treating a pure gold surface by a flow of partially atomized oxygen. Atomic 

oxygen was obtained in a gas flow (PO2 = 1⋅10–7 mbar) using hot (T ∼ 1673 K) platinum foil (20 µm thick Pt foil, 4×15 mm, 

99.99% purity). The oxidized surface was located perpendicular to a hot fiber at a distance of ~2 cm from the latter. Possible 

sputtering of the Pt atomizer was controlled by XPS by the absence of peaks in Pt 4f and Pt 4d spectral regions and by TPD 

by the absence of peaks in the O2 mass spectrum due to the decomposition of platinum oxides with Tmax = 475 K and 623 K. 

No Pt sputtering was observed in all the experimental cycles. 

Stepwise reduction of the gold oxide surface was carried out at 298 K in the preparation chamber as a result of CO 

exposure with a total value from 10 to 100 langmuir (L). Dynamic reduction of the gold oxide surface was studied in the 

analyzer chamber in the dynamic XPS mode under a gas pressure (CO, C2H4 or H2) of 4⋅10–7 mbar at 373 K. 

Quantitative computations. The amount of oxygen adsorbed on the gold surface was estimated by two different 

methods. The first one was based on the calculation of the adsorbate amount using the modified formula by Matloob and 

Roberts [56]. The second one was based on analyzing the decrease of the XPS signal of metallic gold (Au 4f7/2 = 84.0 eV) 

depending on the thickness of the screening oxidized gold layers [57]. Assuming homogeneous adsorbate distribution, the 

thickness of screening layers can be calculated independently on the composition of the screening layers as follows: 

0
sin( ) ln( / ),d I I= −λ ⋅ α ⋅  
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Fig. 8. Schematic formation of the AuO2 surface oxide. 
 

are chained single and double structures containing [AuO4] as the primary fragment. The oxide layer thickness estimated 

from the XPS spectra is ~3 Å. This 2D oxide is stable up to 510 K. During thermal desorption, oxygen is removed from the 

surface due to direct recombination of α1 surface oxygen atoms, and the loss of oxygen is counteracted by oxygen diffusion 

from the subsurface region (α2) to the surface. 

A similar structure of surface oxides was proposed for other metals such as palladium [67-70] and platinum [71, 72], 

which fact confirms the model of surface gold oxide proposed in our work. Properties of the resulting 2D oxide may be of 

practical interest, since 2D gold oxide clusters are considered to be more active than 3D ones. 

When studying the reactivity of the 2D gold oxide αso, it was found that oxygen of this type can oxidize CO quite 

efficiently at room temperature. The reactivity of oxygen in the 2D oxide (χ) is equal to 0.01 and 0.015 at 298 K and 373 K, 

respectively. The use of other gases (ethylene and hydrogen) demonstrated high selectivity of this oxygen species towards 

CO oxidation. The reactivity in the oxidation of ethylene and hydrogen at 373 K is 0.0025 and 0.0001, respectively. Thus, the 

oxygen of the 2D oxide is 250 times more active in CO oxidation than in H2 oxidation. 

The data on gold particles reactivity can explain high selectivity of CO oxidation in excess hydrogen (PROX 

reaction) on nanodispersed gold catalysts. High reactivity of α1-O in CO oxidation and low reactivity in H2 oxidation suggest 

that these oxygen species are key intermediates in the PROX reaction mechanism. To obtain α1-O from O2, O2 molecules are 

to be activated for their dissociation; this process can proceed easier on flat nanoscale catalysts with active participation of 

the support. 

CONCLUSIONS 

Oxygen adsorption on a the gold foil surface was studied by XPS and TPD methods. An oxygen flow in the form of 

a mixture of oxygen molecules and atoms was used to prepare a wide range of oxygen coatings up to two monolayers and to 

study all oxygen species formed on the gold surface. 

It was shown that a layer of chemisorbed atomic oxygen with a maximum coating Θmax = 0.5 ML was formed at the 

initial stages of treating the polycrystalline gold surface with atomic oxygen. As the oxygen coverage increased, the 

adsorption layer transformed into a 3 Å thick 2D gold oxide having a stoichiometry close to AuO2 and stable up to = 510 K. 

It was found that the surface oxide structure contains two nonequivalent oxygen states, one adsorbed on the surface and the 

other located in the subsurface layer. It was hypothesized that the 2D oxide is formed due to the penetration of adsorbed 

oxygen into the subsurface region and subsequent structural rearrangement. 

It was shown that the 2D oxide oxygen is highly active in CO oxidation (χ = 10–2). It was been established that the 

interaction of the 2D oxide oxygen with CO is 250 times more efficient than the H2 oxidation. The data obtained on the 

reactivity of adsorbed oxygen can be used to explain high activity and selectivity of gold catalysts in the predominant CO 

oxidation in excess hydrogen. 
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