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SYNTHESIS, CRYSTAL STRUCTURE,  

AND LUMINESCENCE OF THE ONE- 

DIMENSIONAL LANTHANUM(III)  

COORDINATION POLYMER WITH 2,6-BIS 

(3,5-DICARBOXYPHENOXY)PYRIDINE 
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By the interaction of 2,6-bis(3,5-dicarboxyphenoxy)pyridine (H4L) with lanthanum(III) nitrate in a 1:1 

acetonitrile–water mixture a coordination polymer {[La(HL)(H4L)(H2O)4]⋅2H2O}
n
 is synthesized. 

According to single crystal X-ray diffraction data, the compound is a linear coordination polymer whose 

chains are organized into a 3D supramolecular network by π–π stacking interactions and hydrogen bonds. 

The coordination polymer exhibits intraligand luminescence with the emission maximum at 392 nm. 

DOI: 10.1134/S0022476622120149 

Keywords: lanthanum, carboxylate ligands, metal-organic frameworks, crystal structure, single crystal  

X-ray diffraction analysis, photoluminescence. 

INTRODUCTION 

After the first examples of metal-organic frameworks (MOFs) have been obtained, they continue to attract the 

researchers’ interest due to their ability to selective gas and vapor adsorption [1, 2], luminescent [3, 4] and catalytic properties 

[5, 6]. More and more new types of organic ligands – MOF building blocks – are introduced in the synthesis practice [7]. One 

of these types are aromatic polycarboxylic acids, which additionally contain ether bridges imparting conformational mobility 

to the ligands [8-10]. The presence of several carboxyl groups in different electronic and steric environments often results in 

that some of them remain in the protonated form after the MOF formation and are not involved in coordination by metal ions. 

Due to their acidity, high polarity, and binding capability of both organic compounds and metal ions, free carboxyl groups in 

the MOF composition noticeably change their properties enhancing the proton conductivity, increasing the gas adsorption 

selectivity or catalytic transformations [11]. The nature of the metal ion is no less important for the MOF properties. 

Lanthanide ions are able to form many strong coordination bonds with oxygen atoms in polycarboxylate ligands, which 

increases the hydrolytic and thermal stability of resulting MOFs. Among all lanthanides whose ions can be included in the 

MOF structure, in the literature, the most attention is paid to europium(III) and terbium(III), primarily due to their specific 

luminescent properties [12]. Despite its much greater availability, lanthanum(III) is far less common as a complexing agent,  
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TABLE 1. Crystallographic Parameters and Details of the Diffraction Experiment for Compound 1 

Parameter 1 

Chemical formula C42H35N2O26La 

Molecular weight 2171.74 

Temperature, K 140(2) 

Crystal system Triclinic 

Space group 1P  

a, b, c, Å 8.5563(2),  13.8338(3),  19.1769(4) 

α, β, γ, deg 76.942(2),  82.782(2),  80.519(2) 

V, Å3 2171.74(9) 

Z 2 

ρcalc, g/cm3 1.717 

μ, mm–1 1.086 

F(000) 1132.0 

Crystal size, mm 0.29×0.14×0.04 

θ scanning range, deg 2.20-28.8 

Reflection index ranges –11 ≤ h ≤ 11,  –18 ≤ k ≤ 18,  –26 ≤ l ≤ 20 

Measured reflections 20349 

Independent reflections 9725 

Reflections with I > 2σ(I) 0.0281 

Rint 8788 

GOOF 1.112 

R factors (I > 2σ(I)) R1 = 0.0350,  wR2 = 0.0753 

R factors (all reflections) R1 = 0.0414,  wR2 = 0.0782 

Residual electron density (max / min), e/Å3 0.81 / –0.67 
 

RESULTS AND DISCUSSION 

Compound 1 was prepared by the interaction of lanthanum(III) nitrate and proligand tetracarboxylic acid H4L in  

an acetonitrile–water (1:1) mixture under solvothermal conditions at 120 °C. The reaction conditions were optimized to 

obtain the reaction product in the form of single crystals suitable for the XRD analysis. 

According to single crystal XRD, compound 1 crystallizes in the triclinic crystal system, space group 1P . The 

asymmetric unit includes one La3+ ion and two forms of the ligand (partially deprotonated (HL3–) and neutral (H4L)), as well 

as four coordinated and two solvate water molecules (Fig. 1a). The coordination number of the La3+ ion is nine; it coordinates 

one neutral H4L molecule through one oxygen atom of the carboxyl group and three HL3– anions, with monodentate 

coordination of the carboxylate group for two of them and bidentate coordination for one of them being observed. The other 

four coordination sites are occupied by water molecules. In general, according to the estimation using the Shape 2.1 software 

[20], the coordination polyhedron is best described by a muffin (MFF) shape [21] (Fig. 1b). The La–O bond lengths are in  

a range from 2.486(2) Å to 2.7316(19) Å, which is typical of coordination lanthanum compounds with carboxylate ligands 

[22-24]. 

In the crystal structure of compound 1, each La3+ ion is linked by bridging HL3– anions with two other La3+ cations 

into chains of a 1D coordination polymer oriented along the a crystallographic axis (Fig. 1c, d). These chains are packed into 

layers by hydrogen bonds formed with the participation of carboxyl groups of neutral H4L ligands; the layers are parallel to 

the ab plane (Fig. 1e). The geometric parameters of hydrogen bonds are given in Table 2. Due to π–π-stacking interactions  
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Fig. 1. Structure of coordination polymer 1 according to the single crystal XRD data: the structure of the 
asymmetric unit (a); the coordination polyhedron of the La3+ ion (b); the view of linear chains of the coordination 
polymer along the c and a axes; deprotonated ligands (HL3–) are shown by blue (see the electronic version), 
protonated ligands (H4L) are shown by green (c, d); the 3D supramolecular structure of the coordination polymer; 
π–π-stacking interactions are shown by black dashed lines, hydrogen bonds are shown by violet dashed lines (e). 

 

between pyridine rings located in parallel planes at a distance of 3.570 Å, the layers are packed into a 3D supramolecular 

structure (Fig. 1e). 

Inside the building block of the coordination polymer there is also one O19–H⋯O17 hydrogen bond between two 

coordinated carboxyl groups of two different ligands: HL3– and H4L (Fig. 2, Table 2). It should be noted that this coordination 

mode of protonated and deprotonated carboxyl groups with the formation of the hydrogen bond between them is sufficiently  
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Fig. 4. Photoluminescence excitation and emission spectra of the H4L proligand in the solid phase (a, b); the 
photoluminescence excitation and emission spectra of coordination polymer 1 in the solid phase (c, d); the 
luminescence decay curve of coordination polymer 1 (e); the CIE-1931 chromaticity diagram with the point 
corresponding to emission of compound 1 (f). 

 

compound 1, while the peaks of other phases were not detected. The results of the (CHN) elemental analysis confirm that the 

product is chemically pure and its chemical formula corresponds to the single crystal XRD data. 

According to the thermogravimetric data (Fig. 3b), the loss of solvate water molecules starts almost immediately 

after the onset of heating and ends at a temperature of about 100 °C (weight loss 3.6%, calculated for two water molecules 

3.2%). Right after this, the loss of four coordinated water molecules begins, which ends at about 290 °C (weight loss 9.5%, 
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calculated for six water molecules 9.6%). Above this temperature, the organic ligand in the composition of the coordination 

polymer begins to decompose. 

The luminescent properties of coordination polymer 1 and the proligand H4L were studied in the solid phase at room 

temperature. When excited at a wavelength of 347 nm, tetracarboxylic acid H4L exhibits broadband emission with the 

maximum near 356 nm (Fig. 4a, b) due to π → π* transitions in the aromatic system of the organic compound. The spectra of 

compound 1 have a bathochromic shift of the emission band with the maximum near 392 nm and a hypsochromic shift of the 

absorption band with the maximum near 327 nm (Fig. 4c, d). The luminescence decay kinetics of compound 1 at room 

temperature (Fig. 4e) can be described by the monoexponential dependence I = A0 + Aexp(–t/τ). The calculated luminescence 

lifetime τ is 3 ns; the nanosecond time range is indicative of the intraligand nature of fluorescence. The color coordinates 

determined from the emission spectrum of compound 1 are (0.1722, 0.1351) and correspond to cool blue (Fig. 4f). 

CONCLUSIONS 

Thus, the first example of a coordination compound of rare-earth elements with a poorly studied organic proligand 

2,6-bis(3,5-dicarboxyphenoxy)pyridine was synthesized and characterized by conventional methods. According to the single 

crystal XRD data, the compound is a chain coordination polymer with a 3D supramolecular structure formed via hydrogen 

bonds and π–π stacking. The presence of a ligand molecule with four protonated carboxyl groups in the structure of the 

coordination polymer suggests the possibility to obtain higher dimensional (two- and three-dimensional) coordination 

polymers and prospects for the further research of other lanthanides. 
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