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SYNTHESIS OF A NEW LAYERED Zn(II)  

COORDINATION POLYMER VIA DUAL-LIGAND  

STRATEGY: LUMINESCENCE SENSING  

FOR DETECTION OF Fe
3+
 ION* 

Y. Tang
1
 and X. Yao

2** 

A new Zn(II) coordination polymer with the formula of [Zn(L)(4,4′-Hbpt)]
n
 (1, H2L = 5-[(3-carboxy-4-

hydroxyphenyl)sulfanyl]-2-hydroxybenzoic acid, 4,4′-Hbpt = 1H-3,5-bis(4-pyridyl)-1,2,4-triazole) has 

been successfully synthesized under hydrothermal conditions. Structural characterization revealed that 

compound 1 displays a 2D layered structure with 4-connected sql topology. Interlayer N–H⋯O hydrogen 

bonds finally directed these 2D layers into an interdigitated 3D supramolecular framework. Interestingly, 

compound 1 shows moderate sensing ability for the recognition of Fe3+ ion and the minimum limit of 

detection (LOD) for Fe3+ is 0.05 mM, indicating that such layered structure can be applied as  

a luminescence probe for the detection of Fe3+ ion. 

DOI: 10.1134/S002247662211004X 

Keywords: Zn(II) compound, 2D layer, hydrothermal synthesis, luminescence, supramolecular framework. 

INTRODUCTION 

Employing multidentate organic ligands to bridge metal ions into new functional coordination polymers (FCPs) has 

attracted considerable interest [1-6], and these FCPs show promising potential application prospects in the realm of 

adsorption/separation, luminescence sensing, drug transportation, magnetism, photocatalysis and so on because of their 

unique structural characteristics such as high specific surface area, large pore aperture, modified functional group, etc. [7-10]. 

With the rapid development of economy, the global water pollution has become a serious problem that people have to cope 

with. The toxic pollutants, such as harmful metal ions, antibiotics, organic dyes, aromatic explosives, etc., are posing  

a serious threat to human health. In order to quickly detect these harmful substances, luminescent CPs are widely constructed 

and used as luminescence probes for the detection of pollutants mentioned above. Compared to traditional detection methods, 

the advantages of CPs-based luminescence probe are short response time, portable operating, visible to the naked eye, 

excellent sensitivity and high selectivity, and so on [11-15]. Up to now, the luminescent CPs are mainly constructed from the  
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TABLE 1. Crystallographic Data and Structure Refinements for Compound 1 

Parameter Value 

Empirical formula C26H17N5O6SZn 

Temperature, K 293(2) 

Crystal color Colorless 

Formula weight 592.88 

Crystal system Monoclinic 

Space group P21/c 

a, b, c, Å 10.492(3),  20.476(5),  12.912(3) 

β, deg 111.943(3) 

V, Å3 2572.9(11) 

Z 4 

ρcalcd, g/cm
3 1.531 

μ, mm–1 1.087 

F(000) 1208 

θ Range for data collection, deg 5.856 to 54.974 

Collected / unique reflections 19775 / 5784 

Rint 0.0428 

GOOF on F2 1.047 

R1, wR2 (I > 2σ(I)) / R1, wR2 (all data) 0.0420, 0.1206 / 0.0533, 0.1292 

CCDC 2175782 
 

were also performed to evaluate the sensing sensitivity of 1 toward Fe3+ ion by gradually adding the concentration of Fe3+ in 

EtOH solution. 

RESULTS AND DISCUSSION 

The single crystal structural analysis revealed that compound 1 features a 2D layered structure with 4-connected sql 

topology. Its basic building unit consists of one Zn(II) ion, one L2– ligand, and one 4,4′-Hbpt ligand. As shown in Fig. 1a, the 

Zn(II) ion is surrounded by three oxygen donors and two nitrogen donors, constituting a slightly distorted trigonal 

bipyramidal polyhedron with the Zn–O and Zn–N distances in the range of 1.9926(18)-2.2919(19) Å, 2.060(2)-2.075(2) Å, 

respectively. Each L2– ligand bridges two Zn(II) ion with one carboxylate group in monodentate mode and the other 

carboxylate group in chelating mode, and the dihedral angle between two benzene rings is 87.30°. Each 4,4′-Hbpt ligand also 

bridges two Zn(II) ions via the coordination of two pyridine nitrogen atoms, and the dihedral angles between the pyridine and 

triazole rings are 6.99°, 14.15°, respectively. Based on this coordination pattern of L2– and 4,4′-Hbpt ligands, all Zn(II) ions 

were connected to form a 2D layered structure, extending along the ac plane (Fig. 1b). In this 2D layer, the Zn(II) ions and 

organic ligands (L2– and 4,4′-Hbpt) can be topologically viewed as 4-connected nodes, and linear connectors. Thus, the 

structure of 1 can be simplified as a 4-connected sql topological network with the point symbol of {44.62} (Fig. 1c). Finally, 

adjacent 2D layers are directed by the intermolecular N–H⋯O hydrogen bonds (N3–H3…O6#1 = 2.736 Å, 

∠N3H3O6#1 = 166°, symmetry code: 1–x, 1/2+y, 1/2–z) to form an interdigitated 3D supramolecular framework (Fig. 1d). 

The phase purity was demonstrated by the PXRD experiment. As shown in Fig. 2a, the experimental pattern of the 

bulk is highly matchable with that simulated from the single crystal diffraction data, revealing its good phase purity. Also, the 

thermal stability of 1 was evaluated through the TGA experiment performed in an air atmosphere from 30 °C to 800 °C. The 

TGA curve for 1 shown in Fig. 2b indicates that its struture shows no obvious change before 285 °C. The main weight loss  
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Fig. 1. The coordination environment of Zn(II) ion in 1 (a); the 2D layered structure of 1 (b); 4-connected sql 
topological net for 1 (c); intermolecular N–H⋯O hydrogen bonds directed 3D interdigitated supramolecular 
framework (d). 

 

 

Fig. 2. The PXRD patterns for 1 (a); the TGA curve of 1 (b). 
 

between 285 °C and 500 °C correpsonds to the combustion of the organic ligands. The final undefined residue of 13.86% 

may inbdicate the formation of ZnO (calcd: 13.73%). 

The solid-state emission spectra of compound as well as the organic ligands were measured at room temperature. As 

shown in Fig. S1 (Supplementary Materials), the emission spectrum of 1 has a broad emission band with maxima at 454 nm 

(λex = 380 nm), and the emission peaks for free H2L and 4,4′-Hbpt ligands are observed at 415 nm (λex = 360 nm), 412 nm 

(λex = 370 nm), respectively, which was resulted by the intra-ligand π* → π/n charge transfer. Notably, the maximum 

emission peak of 1 is red-shifted compared to those of free organic ligands. Because of the d10 electronic configuration, Zn(II) 

ion is difficult to reduce or oxidize. Thus, the luminescence emission of may originate from intra-ligand or inter-ligand 

π* → π/n charge transfer [24, 25]. 
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Fig. 3. The luminescence emission spectra of 1 dispersed in different solvents (a); luminescence emission 
intensity of 1 dispersed in different metal ion solutions (b); the change of luminescence emission spectra with 
the variation of Fe3+ concentration (c); Stern–Volmer plot of I0/I versus the Fe

3+ concentration (d). 
 

The intense luminescence of 1 further inspired us to investigate its sensing properties. The luminescent spectra of 

compound 1 dispersed in different solvents were measured. As shown in Fig. 3a, the luminescent intensity of 1 depends on 

the identities of solvent. The intensity of 1 was strongest in EtOH solution. Thus, EtOH solvent was selected for the 

following investigations about sensing metal ions using 1. The results show that Fe3+ ion can quench the luminescence of 1 

significantly while other metal ions, such as Mg2+, Ca2+, La3+, Pb2+, K+, Na+, Al3+, have negligible effect on the luminescence 

intensity of 1 (Fig. 3b), indicating that compound 1 may have potential as a luminescent probe for the detection of Fe3+ via 

luminescence quenching. The sensing sensitivity toward Fe3+ ion was further evaluated via the titration experiment by 

gradually adding the concentration of Fe3+. As shown in Fig. 3c, the emission intensity of 1 decreased sequentially with the 

evaluation of Fe3+ concentration. According to the reports, the quenching efficiency by Fe3+ ion can be quantitively expressed 

via the quenching constant. Based on the Stern–Volmer equation of I0/I = 1 + Ksv [Fe
3+] (I0: luminescence intensity without 

adding Fe3+, I: luminescence intensity after adding Fe3+, Ksv: quenching constant, [Fe
3+]: Fe3+ concentration), the quenching 

constant (Ksv) can be calculated to be 2.692 mM–1 (Fig. 3d). The minimum limit of detection (LOD) was also calculated 

according to the equation: of LOD = 3σ/k (σ: the standard deviation, k: the slope of the Stern–Volmer equation), giving rise 

to a value of 0.05 mM. These results are comparable to those of reported MOFs [26, 27], indicating that compound 1 is  

a good candidate as luminescence probe for the detection of Fe3+. After the luminescence sensing for Fe3+ ion, the structure of 

1 shows no obvious change that ruled out luminescence quenching caused by the structure collapse (Fig. 2a). After sensing 

experiment for Fe3+ ion, the solids of 1 were filtered and further washed by 100 mL H2O for six times. The solids after dried 

in a 100 °C oven for 10 h were further analyzed by the inductively coupled plasma emission spectroscopy (ICP), founding 
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that such solids contain 5.6% Fe element. Thus, the possible quenching mechanism by Fe3+ ions may be caused by the 

coordination of uncoordinated nitrogen atoms with Fe3+ ions, which can promote electron transfer effectively from organic 

ligand to Fe3+ ion. 

In summary, the synergistic coordination of L2– and 4,4′-Hbpt with Zn(II) ions under hydrothermal conditions 

afforded a new 2D layered Zn(II) coordination polymer. Such compound displays intense luminescence, and shows moderate 

sensitivity toward Fe3+ ion, indicating that it may be served as a luminescence probe for the detection of Fe3+ ion. 
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