Journal of Structural Chemistry. Vol. 58, No. 7, pp. 1275-1285, 2017. Original Russian Text © 2017 B. Jin, Q. Jin, F.-K. Jin.

THEORETICAL PREDICTIONS ON THE STRUCTURE AND *d*-AO-BASED AROMATICITY OF $\text{Re}_3\text{F}_3^{2+/0/4-}$, $\text{Re}_3\text{F}_3\text{X}^+$ (X = Li, Na, K), AND $\text{Re}_3\text{F}_3\text{Y}^{2+}$ (Y = Be, Mg, Ca) CLUSTERS

B. Jin¹, Q. Jin², and F. K. Jin³

UDC 541.6

The electronic structure and chemical bonding in $\text{Re}_3\text{F}_3^{2+/0/4-}$ clusters are investigated using density functional theory (DFT) calculations. Out research results show that the ground state for the $\text{Re}_3\text{F}_3^{2+/0/4-}$ clusters is found to be triplet state ${}^3A_1'$ with the D_{3h} symmetry, quintet state ${}^5A'$ with the C_s symmetry, and quintet state ${}^5A_1'$ with the D_{3h} symmetry, respectively. A detailed molecular orbital (MO) analysis reveals that the $\text{Re}_3\text{F}_3^{2+}$ (D_{3h} , ${}^3A_1'$) dication possesses multiple (π_F and partial δ_{Re}) aromaticity that is respectively responsible for the triangular F₃ framework and the triangular Re₃ framework in the $\text{Re}_3\text{F}_3^{2+}$ (D_{3h} , ${}^3A_1'$) dication. The neutral Re_3F_3 (C_s , ${}^5A'$) cluster possesses partial δ -aromaticity that is responsible for the triangular Re₃ framework in the Re_3F_3 (C_s , ${}^5A'$) cluster. The $\text{Re}_3\text{F}_3^{4-}$ (D_{3h} , ${}^5A_1'$) anion possesses multiple (σ and partial δ) aromaticity that is responsible for the triangular Re₃ framework in the $\text{Re}_3\text{F}_3^{4-}$ (D_{3h} , ${}^5A_1'$) cluster. We also examined their hexagonal pyramidal-type $\text{Re}_3\text{F}_3(X^+$ ($C_{3\nu}$, ${}^1A_1'$) (X = Li, Na, K) and $\text{Re}_3\text{F}_3(D_{3h}, {}^1A_1')$ (Y = Be, Mg, Ca) complexes containing the $\text{Re}_3\text{F}_3(D_{3h}, {}^1A_1')$ ligand to reveal that the $\text{Re}_3\text{F}_3(D_{3h}, {}^1A_1')$ structural unit is perfectly preserved in these Re_3F_3X^+ ($C_{3\nu}, {}^1A_1'$) and $\text{Re}_3\text{F}_3Y^{2+}$ ($C_{3\nu}, {}^1A_1'$) complexes also having the corresponding *d*-orbital aromatic characters.

DOI: 10.1134/S0022476617070034

Keywords: rhenium low-fluoride cluster, aromaticity, DFT calculations.

INTRODUCTION

A δ bond localized between the two Re atoms was first discovered in K₂[Re²Cl₈]·2H₂O. Cotton and co-workers [1] reported this milestone research result which represented a new mode of chemical bonding in 1964. This work has also generated renewed interest in rhenium crystalline compounds. Before long, they reported one after another that the crystal

¹School of Environment and Biology Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China; jinbiao@syuct.edu.cn. ²School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, P.R. China. ³Liaoning University of Petroleum and Chemical Technology, Fushun, P.R. China. The text was submitted by the authors in English. *Zhurnal Strukturnoi Khimii*, Vol. 58, No. 7, pp. 1316-1326, September-October, 2017. Original article submitted November, 13, 2015; revised July, 11, 2016.

structure of ReX₃ (X = Cl, Br, I) was composed of Re(μ -X)₃X₆ subunits [2-4]. Rinke *et al.* [5-7] discovered that the ReX₃ (X = Cl, Br, I) compounds vaporized as Re(μ -X)₃X₆ clusters in mass spectrometric experiments. In 2010, Sergeeva and Boldyrev [8] performed the AdNDP analysis for Re₃(μ -X)₃X₆ and Re₃(μ -X)₃X₆²⁻ (X = F, Cl, Br, I) clusters. Results of this analysis revealed that all neutral Re₃(μ -X)₃X₆ (X = F, Cl, Br, I) species having Re = Re double bonds were not aromatic. For the Re₃(μ -X)₃X₆²⁻ (X = F, Cl, Br, I) dianions the AdNDP analysis revealed that the top sixteen full occupied valence orbitals in the Re₃(μ -X)₃X₆²⁻ (X = F, Cl, Br, I) dianions contained six 2*c*-2*e* Re–X σ bonds, three 3*c*-2*e* Re–X–Re σ bonds, three 2*c*-2*e d*-AO-based Re–Re σ bonds, three lone pairs (one on each Re atom), and one delocalized 3*c*-2*e* (HOMO) *d*-AO-based metal-metal π bond ([8] Fig. 9*a*), which makes the dianion π aromaticity according to the (4*n*+2) Hückel rule for π aromaticity, while NICS(0) and NICS(1) suggest aromaticity in both Re₃(μ -X)₃X₆ and Re₃(μ -X)₃X₆²⁻ (X = F, Cl, Br, I) clusters [9]. There are similar results of the research of Re₃X₉, Re₃X₉²⁺ (X = Cl, Br)[8, 10, 11] and [(XtRe)₃(μ ₂-X₆)]⁺ (X = Cl, Br, I) [12].

Rhenium oxides are of importance for their wide industrial applications, especially as industrial catalysts for olefin metatheses [13-15]. Structures, stabilities, and electronic properties of rhenium oxides together with bare rhenium clusters have been systematically investigated by experimental and theoretical methods. The number of rhenium oxide swith aromatic/antiaromatic systems reported in the literature has grown enormously. Specially, mono-rhenium oxide clusters have been studied in a number of previous works, for example experimentally [16-20] and theoretically [17, 20, 21]: $\text{Re}(O_2)^+$, $\text{Re}(O_2)^+_2$, $\text{Re}(O_2)^+_3$, ReO_3^+ , ReO_3^+ , $\text{ReO}_3(O_2)^+$, ReO_5^+ , and so on. Chen *et al.* [22] combined anion photoelectron spectroscopy (PES) with density functional theory (DFT) calculations to study the structures, bonding, and electronic properties in mono-rhenium oxide clusters: ReO_n and ReO_n^{2-} (n = 3-4). Zhai *et al.* [23] reported a PES and DFT study on the electronic structure and conflicting *d*-orbital aromaticity in trirhenium oxide cluster Re_3O_3^- . In addition, the structure, stabilities, and electronic properties of bare rhenium Re_n ($n \le 8$) clusters have been systematically investigated by DFT at the PBEPBE level employing SDD basis sets [24]. Obviously, rhenium compounds contain mainly rich-oxidation-state and lowoxidation-state transition metal compounds. We consider that δ aromaticity may exist in other multi-nuclear rhenium compounds. The $\text{Re}_3\text{F}_3^{2+/0/4-}$ clusters are derived from a transition metal low-fluoride conjecture cluster, and this drives the objective to be achieved at the DFT level.

We assume the counting rules for *d*-AO-based σ and π aromaticity to be 4*n*+4 (aromaticity) and (4*n*+6) (antiaromaticity) for a cyclic structure with an even number of transition metal atoms and (4*n*+2) (aromaticity) and 4*n* (antiaromaticity) for a cyclic structure with an odd number of transition metal atoms. The counting rule for *d*-AO-based δ aromaticity is (4*n*+2)/4*n* for aromaticity/antiaromaticity, respectively [25]. We call it the expanding (4*n*+2) Hückel counting rules for multiple aromaticity in transition metal clusters.

COMPUTATIONAL METHODS

All calculations were performed using the Gaussian 03 program package [26]. Equilibrium geometries and vibrational frequencies of the rhenium low-fluoride $\text{Re}_3\text{F}_3^{2+/0/4-}$ clusters and their hexagonal pyramidal-type $\text{Re}_3\text{F}_3\text{X}^+$ ($C_{3\nu}$, ${}^1A_1'$) (X = Li, Na, K) and $\text{Re}_3\text{F}_3\text{Y}^{2+}$ ($C_{3\nu}$, ${}^1A_1'$) (Y = Be, Mg, Ca) compounds were fully optimized using DFT-B3LYP [27-29] levels of theory with the 6-311++G* basis set for F, Li, Na, K, Be, Mg, Ca and the LANL2DZ basis set for heavier Re metals (Z = 75). Vibrational frequencies were calculated to characterize stationary points as the minima (number of imaginary frequencies $N_{\text{imag}} = 0$) or the transition states ($N_{\text{imag}} = 1$) and the second-order saddle points ($N_{\text{imag}} = 2$) by the B3LYP methods with the corresponding basis set. Molecular orbitals (MOs) for the most stable $\text{Re}_3\text{F}_3^{2+/0/4-}$ clusters, $\text{Re}_3\text{F}_3\text{X}^+$ ($C_{3\nu}$, ${}^1A_1'$) (X = Li, Na, K) and $\text{Re}_3\text{F}_3\text{Y}^{2+}$ ($C_{3\nu}$, ${}^1A_1'$) (Y = Be, Mg, Ca) complexes were calculated by the B3LYP method with the

corresponding basis set. All MO pictures were made using the GaussView 3.0 program [26]. The bonding nature and atomic charge were analyzed by the natural bond orbital (NBO) [30, 31] using the B3LYP method with the corresponding basis set.

RESULTS AND DISCUSSION

The optimized geometric structures for the ground states of $\text{Re}_3\text{F}_3^{2+/0/4-}$ clusters and the minima of $\text{Re}_3\text{F}_3\text{X}^+$ ($C_{3\nu}$, $^1A_1'$) (X = Li, Na, K) and $\text{Re}_3\text{F}_3\text{Y}^{2+}$ ($C_{3\nu}$, $^1A_1'$) (Y = Be, Mg, Ca) complexes are illustrated in Fig. 1. Table 1 lists the lowest vibrational frequencies (γ_{\min}), Wiberg bond indices of Re–Re (WBI_{Re–Re}) and Re–F (WBI_{Re–F}) bonds, total WBI of metal centers M (WBI_M), natural atomic charges of metal centers M (Q_M), and the relative energies ΔE or total energies E_T (kcal/mol) at the B3LYP level of theory for $\text{Re}_3\text{F}_3^{2+/0/4-}$ of selected low-lying isomers, $\text{Re}_3\text{F}_3\text{X}^+(C_{3\nu}, {}^1A_1)$ (X = Li, Na, K) and $\text{Re}_3\text{F}_3\text{Y}^{2+}$ ($C_{3\nu}, {}^1A_1$) (Y = Be, Mg, Ca) clusters. The MOs pictures for the most stable Re_3F_3^2 ($D_{3h}, {}^3A_1'$), Re_3F_3 ($C_s, {}^5A'$), and Re_3F_3^4 ($D_{3h}, {}^5A_1'$) clusters are illustrated in Fig. 2. The MOs pictures for the most stable $\text{Re}_3\text{F}_3\text{Li}^+$ ($C_{3\nu}, {}^1A_1'$) and $\text{Re}_3\text{F}_3\text{Be}^{2+}$ ($C_{3\nu}, {}^1A_1'$) complexes are illustrated in Fig. 3 and the top nine MOs for the Re}_3\text{F}_3 ($D_{3h}, {}^1A_1'$) cluster are given for comparison.

 $\operatorname{Re}_{3}F_{3}^{2+/0/4-}$ clusters. Geometric structures. We initially performed an extensive search for the $\operatorname{Re}_{3}F_{3}^{2+/0/4-}$ global minimum for the singlet, triplet, quintet, and heptet states at the B3LYP level of theories. For the neutral, dication, and quadrivalent anion clusters we considered all different geometries and spin multiplicities. A selected set of optimized low-lying structures and electronic states for the $\operatorname{Re}_{3}F_{3}^{2+/0/4-}$ global minimum are summarized in Table 1. Table 1 presents their

Fig. 1. Optimized structures for the ground states of the $\text{Re}_3\text{F}_3^{2+/0/4-}$ clusters and the minima of the $\text{Re}_3\text{F}_3\text{X}^+$ ($C_{3\nu}$, 1A_1) (X = Li, Na, K) and $\text{Re}_3\text{F}_3\text{Y}^{2+}$ ($C_{3\nu}$, 1A_1) (Y = Be, Mg, Ca) complexes at the B3LYP level of theory.

TABLE 1. Calculated Lowest Vibrational Frequencies (γ_{min}), Wiberg Bond Index of the Re–Re (WBI_{Re–Re}) and Re–F (WBI_{Re–F}) Bonds, Total WBIs of Metal Centers M (WBI_M), Natural Atomic Charges of Metal Centers M (Q_M), and Relative Energies ΔE or Total Energies E_T (kcal/mol) at the B3LYP Level of Theory for Re₃F₃^{2+/0/4-} of Selected Low-Lying Isomers, the Re₃F₃X⁺ ($C_{3\nu}$, 1A_1) (X = Li, Na, K) and Re₃F₃Y²⁺ ($C_{3\nu}$, 1A_1) (Y = Be, Mg, Ca) Clusters

Species	γ_{min}, cm^{-1}	l _{Re–Re} , Å	l _{Re-F} , Å	l _{Re-M} , Å	WBI _{Re-Re}	WBI _{Re-F}	$\Delta E/E_{\rm T}$, kcal/mol	$WBI_{M} \\$	$Q_{\rm M}$
$\frac{\text{Re}_{3}\text{F}_{3}^{2+}}{(D_{3h}, {}^{3}A_{1}')}$	99	2.330	2.067		1.940	0.370	0.000		
$\begin{array}{c} {\rm Re}_{3}{\rm F}_{3}\\ (D_{3h}, {}^{1}A_{1}')\end{array}$	118	2.333	2.104		1.890	0.323	189.508		
$\operatorname{Re}_{3}F_{3}$ $(C_{2} \xrightarrow{3} B_{1})$	156	2.332~2.333	2.102~2.108		1.511~1.836	0.314~0.322	187.625		
$\frac{(C_{2\nu}, B_{1})}{\text{Re}_{3}\text{F}_{3}}$	120	2.317~2.414	2.103~2.146		1.214~2.068	0.282~0.328	0.000		
$\operatorname{Re}_{3}F_{3}$	84	2.415~2.511	2.073~2.167		1.065~1.281	0.280~0.336	116.089		
$(C_{2\nu}, D_2)$ Re ₃ F ₃ ⁴⁻ $(D_{3h}, {}^{1}A'_{1})$	85	2.172	2.406		1.844	0.298	461.219		
$\frac{\text{Re}_{3}\text{F}_{3}^{4-}}{(D_{3h}, {}^{3}A_{1}')}$	72	2.163	2.378		1.929	0.331	495.105		
$\operatorname{Re}_3\operatorname{F}_3^{4-}$	67	2.167~2.186	2.322~2.167		1.624	0.307	85.341		
$(C_{2\nu}, {}^{3}B_{2})$ Re ₃ F ₃ ⁴⁻ $(D_{3h}, {}^{5}A'_{1})$	128	2.156	2.426		1.464	0.293	0.000		
$\operatorname{Re}_{3}\mathrm{F}_{3}^{4-}$	96	2.123~2.251	2.467~2.625		1.269	0.286	136.797		
(C_s, A^{\dagger}) Re ₃ F ₃ Li ⁺ (C_s, A^{\dagger})	131	2.341	2.096	2.696	1.870	0.342	-341452.276	0.188	0.904
$(C_{3\nu}, A_1)$ Re ₃ F ₃ Na ⁺	74	2.342	2.098	3.099	1.875	0.338	-438576.931	0.122	0.938
$(C_{3\nu}, H_1)$ Re ₃ F ₃ K ⁺	55	2.339	2.099	3.514	1.879	0.335	-713209.862	0.064	0.968
$(C_{3\nu}, A_1)$ Re ₃ F ₃ Be ²⁺	131	2.358	2.079	2.267	1.804	0.373	-345681.634	1.090	1.348
$(C_{3\nu}, A_1)$ Re ₃ F ₃ Mg ²⁺	41	2.360	2.085	2.741	1.844	0.365	-462021.024	0.692	1.589
$(C_{3\nu}, A_1)$ Re ₃ F ₃ Ca ²⁺ $(C_{3\nu}, A_1)$	62	2.348	2.087	3.062	1.854	0.358	-761708.365	0.477	1.754

equilibrium geometries, relative energies, the lowest vibrational frequencies and interatomic distances at the B3LYP level of theory. Four geometric isomers of Re₃F₃ with different symmetries and different spin states are the minima on the B3LYP potential energy surfaces with all real vibrational frequencies. The theoretical studies show that the global minimum for Re₃F₃ has a completely arbitrary planar hexagonal structure. The ground state of Re₃F₃ is found to be quintet state ⁵A' with the C_s symmetry. We further located one low-lying singlet state D_{3h} (¹A'₁) and one low-lying triplet state $C_{2\nu}$ (³B₁) for Re₃F₃ by 0.302 eV and 0.299 eV above the ground state, respectively. The heptet state ($C_{2\nu}$, ⁷B₂) is found to be 0.185 eV above the ground state. A detailed MO analysis at the rear reveals that the Re₃F₃ (C_s , ⁵A') cluster possesses multiple aromaticity that is

 $c \operatorname{Re}_{3} \operatorname{F}_{3}^{4-}(D_{3h}, {}^{5}A_{1}')$

Fig. 2. Six top MOs in $\operatorname{Re}_{3}F_{3}^{2+}(D_{3h}, {}^{3}A_{1'})$, ten top MOs in $\operatorname{Re}_{3}F_{3}(C_{s}, {}^{5}A')$, and eight top MOs in $\operatorname{Re}_{3}F_{3}^{4-}(D_{3h}, {}^{5}A_{1'})$.

responsible for the high spin multiplicity of the ${}^{5}A'$ structure. As seen from Table 1, the Re–Re bond length is 2.317 ~ 2.414 Å for the ground state of the Re₃F₃ (C_s , ${}^{5}A'$) cluster. The Re–Re bond length is lower than the sum (2.56 Å) of Re and Re covalent radii. The bond length of the planar arbitrary hexagonal Re₃F₃ (C_s , ${}^{5}A'$) cluster provides the structural criteria of its aromaticity. The bond lengths support the formation of a delocalized effect on the completely arbitrary triangular Re₃ framework. It goes without saying that the Re–Re bond of the planar arbitrary triangular Re₃ framework is a completely delocalized three-center metal-metal single bonding. WBI also provides some information about the existence of a ring current. The calculated WBI values of Re–Re for the ground state of the Re₃F₃ (C_s , ${}^{5}A'$) cluster are 1.214 ~ 2.068, which is between the standard values of a single bond (1.0) and a double bond (2.0). The WBI values support the formation of a delocalized effect on the planar arbitrary triangular Re₃ framework and the aromatic nature of the Re₃F₃ (C_s , ${}^{5}A'$) cluster.

We also performed an extensive search for the $\text{Re}_3\text{F}_3^{2+}$ dication global minimum with different spin multiplicities and different symmetries at the B3LYP level of theory. Our theoretical results clearly show that the global minimum of the

Fig. 3. Five top MOs in Re₃F₃Li⁺ and Re₃F₃Be²⁺ ($C_{3\nu}$, ¹ A_1) (three top MOs in Re₃F₃ (D_{3h} , ¹ $A_{1'}$) are given for comparison).

Re₃F₃²⁺ dication has a perfect D_{3h} (³A'₁) planar regular hexagonal structure. Therefore, the ground state of Re₃F₃²⁺ is found to be triplet state ³A'₁ with the D_{3h} symmetry. The Re–Re bond lengths are 2.330 Å and the Re–F bond lengths are 2.067 Å. The Re–Re bond length is lower than the sum (2.560 Å) of Re and Re covalent radii. The bond length value provides the structural criteria of aromaticity in the Re₃F₃²⁺ (D_{3h} , ³A'₁) dication. The calculated WBI of Re–Re for the ground state of Re₃F₃²⁺ is 1.940, which is between the standard values of a single bond (1.0) and a double bond (2.0). WBI of Re–Re for the Re₃F₃²⁺ (D_{3h} , ³A'₁) dication supports the formation of a delocalized effect on the planar equilateral triangular Re₃ framework and therefore the aromatic nature of the planar regular hexagonal structure for the Re₃F₃²⁺ (D_{3h} , ³A'₁) dication. The population analysis using the SCF density shows that the occupied alpha orbital symmetry configuration of the Re₃F₃²⁺ (D_{3h} , ³A'₁) ground state is $1a'_11e'2e'2a'_11e''3a'_11a'_23e'1a''_22a''_24e'4a'_12e''5e'$.

For the Re₃F₃⁴⁻ cluster five geometric isomers were obtained, which had different spin states and symmetries (Table 1). The ground state of Re₃F₃⁴⁻ is found to be quintet state ${}^{5}A'_{1}(D_{3h})$ with the lowest energy and the highest symmetry. This structure is based on a regular planar hexagon and the Re–Re and Re–F bond lengths are 2.426 Å and 2.156 Å. Similarly, the Re–Re bond length is lower than the sum (2.56 Å) of Re and Re covalent radii. It supports the formation of a delocalized effect on the equilateral triangular Re₃ framework. An isosceles hexagonal C_{2v} (${}^{3}B_{2}$) structure with a triplet state is found to be only 0.136 eV above the ground state. We further located two low-lying D_{3h} symmetries: D_{3h} (${}^{3}A'_{1}$) and D_{3h} (${}^{1}A'_{1}$) for the Re₃F₃⁴⁻ cluster, 0.789 eV and 0.735 eV above the ground state, respectively, whereas the heptet state (C_{s} , ${}^{7}A'$) is 0.218 eV above the ground state. Our theoretical results clearly show that the Re₃F₃⁴⁻ cluster has a propensity to adopt the quintet state D_{3h} (${}^{5}A'_{1}$) ground state. The high spin ground state for the Re₃F₃⁴⁻ cluster is quite remarkable. The population analysis using the SCF density shows that the occupied alpha orbital symmetry configuration of the Re₃F_3⁴⁻ (D_{3h} , ${}^{5}A'_{1}$) global minimum is $1a'_{1}1e'2a'_{1}2e'1e''3e'1a'_{2}1a''_{2}3a'_{1}2a''_{2}4e'4a'_{1}2e''5e'1a''_{1}6e'5a'_{1}$. A detailed MO analysis at the rear reveals that the occupied alpha orbitals of Re₃F_3⁴⁻ with that of the Re₃F_3⁴⁻ dication, we obtain that the Re–F bond length of Re₃F_3⁴⁻ is larger (0.09 Å) than

that of the $\text{Re}_3\text{F}_3^{2+}$ dication. This is due to the additional six electrons occupying HOMO (5 a'_1), HOMO-1 (6e'), and HOMO-2 (1 a''_1) of $\text{Re}_3\text{F}_3^{4-}$ (D_{3h} , ${}^5A'_1$). The HOMO (5 a'_1) is a fully occupied σ orbital with two σ electrons, which will lead to σ aromaticity in $\text{Re}_3\text{F}_3^{4-}$ (D_{3h} , ${}^5A'_1$).

MO analysis for the Re₃ F_3^{2+} (D_{3h} , ${}^{3}A'_1$), Re₃ F_3 (C_s , ${}^{5}A'$), and Re₃ F_3^{4-} (D_{3h} , ${}^{5}A'_1$) clusters. To further understand the electronic structure and chemical bonding in $\operatorname{Re}_3F_3^{2+}(D_{3h}, {}^{3}A'_1)$, $\operatorname{Re}_3F_3(C_s, {}^{5}A')$, and $\operatorname{Re}_3F_3^{4-}(D_{3h}, {}^{5}A'_1)$ clusters, we carried out a detailed MO analysis for their ground states. Similar to the $Re_3O_3^{23-}$ ground state, the C_s global minimum structure for the Re₃F₃ (C_s , ⁵A') ground state is very different from the highly symmetric D_{3h} structure of aromatic Ta₃O₃³⁴⁻ and Hf₃F₃³³⁻ clusters. The origin of the reduced symmetry in Re₃F₃ (C_s , ${}^5A'$) can be understood from an analysis of its valence electronic structure. The Re atom possesses electron configuration $5d^56s^2$. The top eleven occupied valence orbitals in the Re₃F₃ (C_s, ${}^{5}A'$) ground state are Re-based s-d orbitals, as shown in Fig. 3b. Among the eleven MOs, three are responsible for the σ bonding of the triangular Re3 framework. They include completely bonding HOMO-10 (10a') and partially bonding/antibonding HOMO-8 (11a') and HOMO-7 (12a'). The antibonding nature of HOMO-8 (11a') and HOMO-7 (12a') significantly reduces the σ bonding HOMO-10 (10a') contribution to the Re₃ framework, and thus they would almost cancel each other. HOMO-9 (4a") is a completely bonding π orbital, HOMO-5 (5a") and HOMO-4 (6a") are two partially bonding/antibonding π^* orbitals, HOMO-1 (7*a*") is a nonbonding π^{non} orbital, and HOMO (8*a*") is also a partially bonding/antibonding π^* orbital in the Re₃F₃ (C_s , ${}^5A'$) cluster. These five MOs of the Re₃F₃ (C_s , ${}^5A'$) cluster constitute a set of bonding, antibonding, and nonbonding orbitals composed of the same Re $5d_{yz}$ and $5d_{xz}$ hybrid functions. When all bonding, antibonding, and nonbonding MOs composed of the same AOs (such as the Re $5d_{yz}$ and $5d_{xz}$ orbitals in this case) are occupied, the net bonding effect is expected to be zero and this set MOs can be viewed as atomic lone pairs [35]. If therein the antibonding or nonbonding MOs are half-filled, the net bonding effect of this set of MOs will be approximately zero. The set of HOMO-9 (4a"), HOMO-7(5a"), HOMO-4 (6a") and HOMO-1 (7a"), and HOMO (8a") do not contribute to the net bonding in the Re₃F₃ (C_s , ${}^{5}A'$) cluster. The most interesting MO is HOMO-6 (13*a'*) that is a completely bonding δ orbital. The 13a' MO comes mainly from the overlap of the $5d_{-2}$ orbital on each Re atom. This orbital is symmetric with respect to the molecular plane and perpendicular to the molecular C_3 axis and has two nodal surfaces. HOMO-2 (15a') and HOMO-3 (14a') are two partial bonding/antibonding δ^* orbitals. Thus, HOMO-4 (13a'), HOMO (15a'), and HOMO-3 (14a') form a δ bonding/antibonding pair. HOMO-4 (13a') is fully filled and HOMO-2 (15a') and HOMO-3 (14a') are half-filled, resulting in a partial δ bonding contribution to the Re₃F₃ (C_s , ${}^5A'$) cluster. The Re₃F₃ (C_s , ${}^5A'$) cluster can be considered to possess partial δ aromatic characters, which is the origin of the C_s (⁵A') global minimum structure. Our theoretical results clearly show that the Re₃F₃ (C_s , ⁵A') cluster has a propensity to adopt a high spin state with low symmetry. The global minimum for Re₃F₃ (C_s , $^{5}A'$ is open shell structure with а valence electronic configuration an $1a'^{2}2a'^{2}3a'^{2}4a'^{2}5a'^{2}6a'^{2}7a'^{2}1a''^{2}2a''^{2}8a'^{2}9a'^{2}3a''^{2}10a'^{2}4a''^{2}11a'^{2}12a'^{2}13a'^{2}5a''^{2}6a''^{2}14a'^{1}15a'^{1}7a''^{1}8a''^{1}.$

Our computational results also show that the global minimum $D_{3h} ({}^{1}A'_{1})$ for Re₃F₃²⁺ has been proved to possess three types (σ , π , and δ) of the *d*-bonding interaction (as shown in Fig. 3*a*) with electron configuration $1a'_{1}^{2}1e'^{4}2a'_{1}^{2}2e'^{4}1a'_{2}^{2}3e'^{4}1e''^{4}1a''_{2}^{2}3a'_{1}^{2}2a''_{2}^{2}4e'^{4}4a'_{1}^{2}2e''^{4}5e'^{4}$. Because of the similarity with Re₃F₃ in the structure, we explore the possibility of aromaticity in Re₃F₃²⁺. The ground state of the Re₃F₃²⁺ (D_{3h} , ${}^{3}A'_{1}$) dication is predicted to be an open shell with electron configuration $1a'_{1}^{2}1e'^{4}2e'^{4}2a'_{1}^{2}1e''^{4}3a'_{1}^{2}1a'_{2}^{2}3e'^{4}1a''_{2}2a''_{2}^{2}4e'^{4}4a'_{1}^{2}2e''^{4}5e'^{2}$, which is formed by removing two electrons from the HOMO of Re₃F₃ (D_{3h} , ${}^{1}A'_{1}$). As shown in Figs. 4*a* and 3*a*, the top eight MOs of Re₃F₃ (D_{3h} , ${}^{1}A'_{1}$) were essentially maintained in the Re₃F₃²⁺ (D_{3h} , ${}^{3}A'_{1}$) dication because only slight distortions are observed. The fully occupied

HOMO-8 $(3a'_1)$ of the $(\text{Re}_3\text{F}_3)^{2+}$ $(D_{3h}, {}^3A'_1)$ dication is a σ bonding MO, and the fully occupied HOMO-3 (4e') of the $\text{Re}_3\text{F}_3^{2+}$ $(D_{3h}, {}^{3}A'_{1})$ dication are two partially bonding/antibonding doubly degenerate σ^{*} orbitals. They form a σ bonding/antibonding pair, due to that HOMO-3 (4e') and HOMO-8 (3 a'_1) are composed of the same s-d hybrid functions. They would almost cancel each other, thus resulting in negligible metal-metal σ bonding in the Re₃F₃²⁺ (D_{3h} , ${}^{3}A'_{1}$) dication. Analogously, the fully occupied HOMO-4 $(2a_2'')$ and HOMO-1 (2e'') of $\text{Re}_3\text{F}_3^{2+}$ $(D_{3h}, {}^3A_1')$ are π and π^* orbitals, respectively, which form a π bonding/antibonding pair and do not contribute to the net chemical bonding in the Re₃ F_3^{2+} (D_{3h} , ${}^{3}A'_1$) dication. The HOMO-2 $(4a'_1)$ and HOMO (5e') of Re₃F₃²⁺ (D_{3h} , ${}^{3}A'_1$) are δ bonding and δ^* antibonding orbitals, respectively, which are formed by removing two electrons from the $5e'^4$ HOMO of Re₃F₃ (D_{3h} , ${}^1A'_1$). These three orbitals form a δ bonding/antibonding pair. The antibonding 5e' HOMO is half-filled, resulting in a partial δ bonding contribution, which is responsible for the triangular Re₃ framework. The remaining one valence MO of the Re₃ F_3^{2+} (D_{3h} , ${}^{3}A'_1$) dication is HOMO-5 ($1a''_2$), and the overlap of the $2p_z$ -orbitals of three fluoride atoms generates a bonding $1a_2'' \pi$ -MO with two π electrons. The two delocalized π electrons indicate that the Re₃ F_3^{2+} (D_{3h} , ${}^{3}A'_1$) dication can be considered as π_F aromatic according to the (4*n*+2) Hückel rule, which is responsible for the triangular F₃ framework. In the present studies, the Re₃F₃²⁺ (D_{3h} , ${}^{3}A'_{1}$) dication is the first example of π aromaticity composed of the p_z AOs of three nonmetal atoms in transition metal and nonmetal compounds. The Re₃F₃²⁺ (D_{3h} , ${}^{3}A'_{1}$) dication is an unusual case of combining $5d_{z^{2}}$ orbital partial δ aromaticity of Re₃ with $2p_{z}$ orbital π aromaticity of F₃. Thus, the $\operatorname{Re}_{3}F_{3}^{2+}(D_{3h}, {}^{3}A_{1}')$ dication can be considered to possess the multiple (π_{F} and partial δ) aromatic character.

As depicted in Fig. 3*c*, the $3a'_1$, 4e', and 6e' MOs of the $\operatorname{Re}_3\operatorname{F}_3^{4-}(D_{3h}, {}^5A'_1)$ ground state form a σ bonding/antibonding pair and should not significantly contribute to the net aromaticity. The $2a''_2$, 2e'', and $1a''_1$ MOs form a set of π bonding/antibonding/nonbonding MOs composed of the same Re $5d_{z^2}$, $5d_{yz}$, and $5d_{xz}$ hybrid functions, and should not contribute to the net aromaticity. The $4a'_1$ and 5e' MOs are completely δ bonding and partially δ^* bonding/antibonding MOs. The bonding $4a'_1$ MO is fully filled and the bonding/antibonding 5e' MOs are half-filled, resulting in a partial δ aromaticity contribution to $\operatorname{Re}_3\operatorname{F}_3^{4-}(D_{3h}, {}^5A'_1)$. The most interesting MO is HOMO ($5a'_1$), which is a completely bonding σ_r orbital composed of $5d_{xy,x^2-y^2}$ AOs from each Re atom. The two delocalized electrons of the Re atom indicate that the $\operatorname{Re}_3\operatorname{F}_3^{4-}(D_{3h}, {}^5A'_1)$ cluster can be considered as σ_r aromaticity according to the (4n+2) Hückel rule for σ aromaticity. Fig. 3c shows that the fully occupied HOMO ($5a'_1$) indeed describes pure three-center two-electron (3c-2e) Re–Re σ_r bonding interactions with a very small contribution to the $\operatorname{Re}_3\operatorname{F}_3^{4-}(D_{3h}, {}^5A'_1)$ cluster. In conclusion, the $\operatorname{Re}_3\operatorname{F}_3^{4-}(D_{3h}, {}^5A'_1)$ cluster can be considered as σ_r aromatic characters.

Re₃F₃X⁺ ($C_{3\nu}$, ${}^{1}A_{1}$) (X = Li, Na and K) and Re₃F₃Y²⁺ ($C_{3\nu}$, ${}^{1}A_{1}$) (Y = Be, Mg and Ca) complexes. Geometric structures. Our studies on the Re₃F₃X⁺ ($C_{3\nu}$, ${}^{1}A_{1}$) (X = Li, Na, K) and Re₃F₃Y²⁺ ($C_{3\nu}$, ${}^{1}A_{1}$) (Y = Be, Mg, Ca) complexes indicate that all Re–Re bond lengths are equal in the same species. As seen from Fig. 1, the Re–Re bond lengths are 2.341 Å, 2.342 Å, 2.339 Å, and 2.358 Å, 2.360 Å, 2.348 Å for Re₃F₃Li⁺, Re₃F₃Na⁺, Re₃F₃K⁺, and Re₃F₃Be²⁺, Re₃F₃Mg²⁺, Re₃F₃Ca⁺₂, respectively. These Re–Re bond lengths are lower than the sum (2.560 Å) of covalent radius for the Re and Re atoms. The Re–Re bond length of the regular triangular Re₃ framework in the Re₃F₃ (D_{3h} , ${}^{1}A'_{1}$) ligand of the hexagonal pyramidal Re₃F₃X⁺ ($C_{3\nu}$, ${}^{1}A_{1}$) (X = Li, Na, K) and Re₃F₃Y²⁺ ($C_{3\nu}$, ${}^{1}A_{1}$) (Y = Be, Mg and Ca) complexes provides the structural criteria of

aromaticity. Except for the trend of all Re-Re bond lengths in the same structure to be equal, another trend can also be inferred from Fig. 2. The Re-Re bond lengths increase in the following order: Re_3F_3 $(D_{3h},$ ${}^{3}A'_{1}$ $) < \text{Re}_{3}F_{3}\text{Li}^{+} < \text{Re}_{3}F_{3}\text{Na}^{+} < \text{Re}_{3}F_{3}\text{Be}^{2+} < \text{Re}_{3}F_{3}\text{Mg}^{2+} < \text{Re}_{3}F_{3}\text{Ca}^{+}_{2}$. Based on the equation of all Re-Re bond lengths in the same conformation, we could conclude that in all species the Re3 building block has a delocalized Re-Re bond and the strength of the metal-metal bond between Re and Re decreases in the above order. The above mentioned results can also be obtained from the analysis of WBI_{Re-Re} in Table 1.

MO analysis. The electron structure and bonding nature in the hexagonal pyramidal Re₃F₃X⁺ (C_{3y} , ${}^{1}A_{1}$) (X = Li, Na and K) and Re₃F₃Y²⁺ (C_{3v} , ${}^{1}A_{1}$) (Y = Be, Mg and Ca) complexes can be also understood by analyzing their MOs. As depicted in Fig. 3, the MO numbers, shapes, and distribution and the bonding nature are completely the same in the hexagonal pyramidal Re₃F₃Li⁺ (C_{3v} , ${}^{1}A_{1}$) and Re₃F₃Be²⁺ (C_{3v} , ${}^{1}A_{1}$) complexes as the Re₃F₃ (D_{3h} , ${}^{1}A'_{1}$) ligand because only slight distortions are observed. The free Re₃F₃ $(D_{3h}, {}^{1}A'_{1})$ cluster and its Re₃F₃X⁺ $(C_{3\nu}, {}^{1}A_{1})$ (X = Li, Na, K) and Re₃F₃Y²⁺ $(C_{3\nu}, {}^{1}A_{1})$ (Y = Be, Mg and Ca) complexes are valence isoelectronic species and found to have the same singlet spin state. As shown in Fig. 3*a*, fully occupied $3a'_1$, $2a''_2$ and $4a'_1$ in the free Re₃F₃ (D_{3h} , ${}^1A'_1$) cluster are σ bonding, π bonding, and δ bonding orbitals, respectively. Fully occupied 4e', 2e'', and 5e' in the free Re₃F₃ $(D_{3h}, {}^{1}A'_{1})$ cluster are doubly degenerate σ^{*} antibonding, π^* antibonding, and δ^* antibonding orbitals, respectively. The free Re₃F₃ (D_{3h} , ${}^1A'_1$) cluster possesses delocalized σ bonding, π -bonding, and δ bonding orbitals. This cannot make the aromatic nature of the Re₃F₃ $(D_{3h}, {}^{1}A'_{1})$ cluster because $4e' \sigma^*$ antibonding, $2e'' \pi^*$ antibonding, and $5e' \delta^*$ antibonding orbitals exist in electron configuration $1a'_{1}^{2}1e'^{4}2a'_{1}^{2}2e'^{4}1a'_{2}^{2}3e'^{4}1e''^{4}1a''_{2}^{2}3a'_{1}^{2}2a''_{2}^{2}4e'^{4}4a'_{1}^{2}2e''^{4}5e'^{4}$ of the free Re₃F₃ (D_{3h} , $^{1}A'_{1}$) cluster. It must affirm that the free Re₃F₃ $(D_{3h}, {}^{1}A'_{1})$ cluster possesses three types (σ , π , and δ) of the *d*-bonding interaction. As seen from Fig. 3*b* and *c*, HOMO-4 (6a₁) of Re₃F₃Li⁺ ($C_{3\nu}$, $^{1}A_{1}$) (or Re₃F₃Be²⁺) is a completely delocalized δ bonding MO that mainly originates from the HOMO-2 $(4a'_1)$ of free Re₃F₃ $(D_{3h}, {}^{1}A'_{1})$. The HOMO-7 $(5a_1)$ of Re₃F₃Li⁺ $(C_{3\nu}, {}^{1}A_1)$ (or Re₃F₃Be²⁺) is a completely delocalized π bonding MO that mainly originates from the HOMO-4 (2a') of free Re₃F₃ (D_{3h}, ¹A'₁). The fully occupied HOMO-8 (4*a*₁) of Re₃F₃Li⁺ ($C_{3\nu_1}$ ¹ A_1) (or Re₃F₃Be²⁺) is a completely delocalized σ bonding MO that mainly originates from the HOMO-5 $(3a'_1)$ of free Re₃F₃ $(D_{3h}, {}^{1}A'_1)$. Three MOs existing in Re₃F₃Li⁺ $(C_{3\nu}, {}^{1}A_1)$ or Re₃F₃Be²⁺ $(C_{3\nu}, {}^{1}A_1)$ are three types of the *d* bonding interaction, which is responsible for a three-center metal-metal bond of the triangular Re₃ framework in $\text{Re}_3\text{F}_3\text{Li}^+$ ($C_{3\nu}$, 1A_1) or $\text{Re}_3\text{F}_3\text{Be}^{2+}$ ($C_{3\nu}$, 1A_1). Similar results also exist in the $\text{Re}_3\text{F}_3\text{Na}^+$ ($C_{3\nu}$, 1A_1), $\text{Re}_3\text{F}_3\text{K}^+$ ($C_{3\nu}$, 1A_1), $\operatorname{Re}_{3}F_{3}\operatorname{Mg}^{2+}(C_{3\nu}, {}^{1}A_{1})$, and $\operatorname{Re}_{3}F_{3}\operatorname{Ca}_{2}^{+}(C_{3\nu}, {}^{1}A_{1})$ complexes. Our extensive DFT calculations reveal that the ground state of the ${}^{1}A'_{1})$ Re₃F₃ $(D_{3h},$ cluster valence electronic configuration possesses $1a'_{1}1e''^{4}2a''_{1}2e''^{4}1a'_{2}3e''^{4}1e''^{4}1a''_{2}3a'_{1}2a''_{2}4e''^{4}4a'_{1}2e''^{4}5e'^{4}$ and the hexagonal pyramidal-type Re₃F₃Li⁺ and Re₃F₃Be²⁺ $^{1}A_{1}$ complexes are the $(C_{3v},$ structures with configuration а valence electronic $1a_1^2 1e^2 2e^2 2a_1^2 3e^2 4e^2 1a_2^2 5e^2 6e^2 3a_1^2 1a_2^2 7e^2 8e^2 4a_1^2 5a_1^2 9e^2 10e^2 6a_1^2 11e^2 12e^2 13e^2 14e^2$. Obviously, the Re₃F₃ (D_{3h} , $^1A_1'$) structural units were perfectly preserved in these $\text{Re}_3\text{F}_3\text{X}^+$ ($C_{3\nu}$, $^1A_1'$) (X = Li, Na, K and $\text{Re}_3\text{F}_3\text{Y}^{2+}$ ($C_{3\nu}$, $^1A_1'$) (Y = Be, Mg, Ca) complexes.

As depicted in Fig. 3*b*, the Li center in Re₃F₃Li⁺ ($C_{3\nu}$, ${}^{1}A_{1}$) is practically a naked atom. The calculated atomic natural electron configuration of Re [Xe] $6s^{0.59}5d^{5.62}6p^{0.03}6d^{0.02}$ and Li [He] $2s^{0.07}2p^{0.01}$ of Re₃F₃Li⁺ ($C_{3\nu}$, ${}^{1}A_{1}$) support the metal-metal bonding of the Re–Re and Li–Re ionic interactions. Similar results also exist in the Re₃F₃Na⁺ ($C_{3\nu}$, ${}^{1}A_{1}$), Re₃F₃K⁺ ($C_{3\nu}$, ${}^{1}A_{1}$), Re₃F₃Kg²⁺ ($C_{3\nu}$, ${}^{1}A_{1}$), and Re₃F₃Ca⁺₂ ($C_{3\nu}$, ${}^{1}A_{1}$) complexes. Table 1 indicates that Re–Re and Re–F interactions are typical single bonds throughout the whole hexagonal pyramidal complexes, and WBI_{Re–Re} ≈ 1.804 – 1.430 and WBI_{Re–F} ≈ 0.335 –

-0.373 were found. The X⁺-Re₃F₃ (X = Li, Na, K) (or Y²⁺-Re₃F₃ (Y = Be, Mg, Ca)) ionic interactions are clearly demonstrated by the fact that the alkali metal atom and the alkali-earth metal atom in these hexagonal pyramidal complexes possess high calculated natural atomic charges with $Q_{Li} = 0.904|e|$, $Q_{Na} = 0.938|e|$, $Q_K = 0.969|e|$, $Q_{Be} = 1.348|e|$, $Q_{Mg} = 1.589|e|$, and $Q_{Ca} = 1.754|e|$. The ionicity of these complexes increases from X = Li, Na to K and from Y = Be to Mg and Ca, in line with the corresponding total WBIs that decrease from WBI_{Li} = 0.188, WBI_{Na} = 0.122 to WBI_K = 0.064 and from WBI_{Be} = 1.090, WBI_{Mg} = 0.692 to WBI_{Ca} = 0.477. The HOMO energy of the system is effectively lowered from -7.59 eV in free Re₃F₃ to -11.67 eV in Re₃F₃Li⁺, -12.14 eV in Re₃F₃Na⁺, -12.65 eV in Re₃F₃K⁺, and -16.80 eV in Re₃F₃Ca⁺₂, -17.88 eV in Re₃F₃Mg²⁺, -18.96 eV in Re₃F₃Be²⁺ and the corresponding HOMO-LUMO energy gaps are greater than 7.51 eV in free Re₃F₃, which clearly provides evidence for the presence of a local ring-current effect on the Re₃ triangles and therefore the aromatic nature of the Re₃F₃ (D_{3h} , $^{1}A'_{1}$) ligand in these novel complexes.

CONCLUSIONS

We reported the theoretical studies on the rhenium low-fluoride $\text{Re}_3\text{F}_3^{2+/0/4-}$ clusters and its hexagonal pyramidaltype $\operatorname{Re}_3F_3X^+(C_{3\nu}, {}^1A_1')$ (X = Li, Na, K) and $\operatorname{Re}_3F_3Y^{2+}(C_{3\nu}, {}^1A_1')$ (Y = Be, Mg, Ca) complexes using DFT calculations. Comprehensive calculations are performed in search for the lowest energy structures of the $Re_3F_3^{2+}$ dication, neutral Re_3F_3 , $\operatorname{Re}_3F_3^{4-}$ clusters. The ground state of $\operatorname{Re}_3F_3^{2+}$ is found to be triplet state and ${}^{3}A'_{1}$ $(1a_{1}^{\prime 2}1e^{\prime 4}2e^{\prime 4}2a_{1}^{\prime 2}1e^{\prime \prime 4}3a_{1}^{\prime 2}1a_{2}^{\prime 2}3e^{\prime 4}1a_{2}^{\prime 2}2a_{2}^{\prime \prime 2}4e^{\prime 4}4a_{1}^{\prime 2}2e^{\prime \prime 4}5e^{\prime 2})$ with the D_{3h} symmetry; the ground state of Re₃F₃ is found to be quintet state ${}^{5}A'$ $(1a'^{2}2a'^{2}3a'^{2}4a'^{2}5a'^{2}6a'^{2}7a'^{2}1a''^{2}2a''^{2}8a'^{2}9a'^{2}3a''^{2}10a'^{2}4a''^{2}11a'^{2}12'a_{2}13a'^{2}5a''^{2}6a''^{2}1aa''^{1}5a''^{1}7a''^{1}8a''^{1})$ with C_s symmetry, and the ground state of $\operatorname{Re}_3 F_3^{4-}$ is found to be quintet state the ${}^{5}A'_{1}$ $(1a_1'^2 1e'^4 2a_1'^2 2e'^4 1e''^4 3e'^4 1a_2'^2 1a_2''^2 3a_1'^2 2a_2''^2 4e'^4 4a_1'^2 2e''^4 5e'^2 1a_1''^2 6e'^2 5a_1'^2)$ with the D_{3h} symmetry, respectively. A detailed MO analysis reveals that $\text{Re}_3\text{F}_3^{2+}$ (D_{3h} , ${}^3A_1'$) possesses multiple (π and partial δ) aromaticity responsible for a three-center bond of the triangular F_3 framework and the triangular Re_3 framework. The Re_3F_3 (C_s , ${}^5A'$) cluster possesses partial δ -aromaticity responsible for a three-center metal-metal bond of the triangular Re₃ framework. The Re₃F₃⁴⁻ cluster possesses multiple (σ and partial δ) aromaticity responsible for a three-center metal-metal bond of the triangular Re₃ framework. The totally delocalized d orbital chemical bonding was discovered in the transition metal rich-oxidation state and transition-metal low-oxidation state clusters in the past. The results obtained in the present work provide other transition-metal low-fluoride $\text{Re}_3F_3^{2+/0/4-}$ clusters containing multiple (σ , π , and δ) aromaticity and its hexagonal pyramidal-type $\text{Re}_3F_3X^+$ ($C_{3\nu}$, 1A_1) (X = Li, Na, K) and $Re_3F_3Y^{2+}(C_{3\nu}, {}^1A_1)$ (Y = Be, Mg and Ca) complexes also possess the corresponding three types of the d bonding interaction. It is worth noting that the Re₃ F_3^{2+} (D_{3h} , ${}^{3}A'_1$) dication is the first example of π orbital aromaticity composed of the $2p_z$ AOs of three nonmetal F atoms in the transition metal compound. These novel complexes may be targeted in future experiments to open a new area of coordination chemistry.

REFERENCES

- F. A. Cotton, N. F. Curtis, C. B. Harris, B. F. G. Johnson, S. J. Lippard, J. T. Mague, W. R. Robinson, and J. S. Wood, *Science*, 145, 1305-1307 (1964).
- 2. F. A. Cotton and J. T. Mague, Inorg. Chem., 3, 1402-1407 (1964).
- 3. F. A. Cotton and S. J. Lippard, Inorg. Chem., 4, 59-65 (1965).
- 4. M. J. Bennett, F. A. Cotton, and B. M. Foxman, Inorg. Chem., 7, 1563-1569 (1968).

- 5. K. Rinke and H. Schäfer, Angew. Chem., 77, 131 (1965).
- 6. H. Schäfer, K. Rinke, and H. Rabeneck, Z. Anorg. Allg. Chem., 403, 23-34 (1974).
- 7. K. Rinke, M. Klein, and H. Schäfer, J. Less Common Met., 12, 497-503 (1967).
- 8. A. P. Sergeeva and A. I. Boldyrev, Comm. Inorg. Chem., 31, 2-12 (2010).
- 9. P. F. Week, A. P. Sergeeva, E. Kim, A. I. Boldyrev, and K. R. Czerwinski, Inorg. Chem., in press.
- 10. L. Alvarbo-Soto, R. Ramirez-Tagle, and R. Arratia-Perez, Chem. Phys. Lett., 467, 94-96 (2008).
- 11. L. Alvarbo-Soto, R. Ramirez-Tagle, and R. Arratia-Perez, J. Phys. Chem. A, 113, 1671-1673 (2009).
- 12. A. C. Tsipis, I. G. Depastas, E. E. Karagiannis, and C. A. Tsipis, J. Comput. Chem., 31, 431-446 (2010).
- 13. J. A. Moulijn and J. C. Mol, J. Mol. Catal., 46, 1-14 (1988).
- 14. J. C. Mol, Catal. Today, 51, 289-299 (1999).
- 15. W. A. Herrmann, J. G. Kuchler, J. K. Felixberger, E. Herdtweck, and W. Wagner, *Angew. Chem. Int. Ed.*, 27, 394-396 (1988).
- 16. B. B. Averkiev and A. I. Boldyrev, J. Phys. Chem. A, 111, 12864-12866 (2007).
- 17. B. Wang, H. J. Zhai, X. Huang, and L. S. Wang, J. Phys. Chem. A, 112, 10962-10967 (2008).
- 18. H. Tanaka, S. Neukemans, E. Jansses, R. E. Silverans, and P. Lievens, J. Am. Chem. Soc., 125, 2862/2863 (2003).
- 19. T. Höltzl, E. Janssens, N. Veldeman, T. Veszprémi, P. Lievens, and M. T. Nguyen, *Chem. Phys. Chem.*, 9, 833-838 (2008).
- 20. T. Höltzl, N. Veldeman, T. Veszprémi, P. Lievens, and M. T. Nguyen, Chem. Phys. Lett., 469, 304-307 (2009).
- C. S. Wannere, C. Corminboeuf, Z. X. Wang, M. D. Wodrich, R. B. King, and P. v. R. Schlyer, J. Am. Chem. Soc., 127, 5701-5705 (2005).
- 22. W. J. Chen, H. J. Zhai, X. Huang, and L. S. Wang, Chem. Phys. Lett., 512, 49-53 (2011).
- 23. H. J. Zhai, W. J. Chen, X. Huang, and L. S. Wang, RSC. Adv., 2, 2707-2712 (2012).
- 24. X. J. Feng, T. T. Cao, L. X. Zhao, Y. M. Lei, and Y. Luo, Eur. Phys. J. D., 50, 285-288 (2008).
- 25. Y. Zubarev, B. B. Averkiev, H. J. Zhai, L. S. Wang, and A. I. Boldyrev, Phys. Chem. Chem. Phys., 10, 257-267 (2008).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Jr. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, *Gaussian 03*, P. Revision C.01 ed., Gaussian, Inc., Pittsburgh, PA (2003).
- 27. A. D. Becke, J. Chem. Phys., 98, 5648-5652 (1993).
- 28. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785-789 (1988).
- 29. J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244-13249 (1992).
- 30. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, 899-926 (1988).
- 31. A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys., 83, 735-747 (1985).
- 32. H. J. Zhai, B. B. Averkiev, D. Y. Zubarev, L. S. Wang, and A. I. Boldyrev, Angew. Chem., 119, 4355-4358 (2007).
- 33. B. Jin and Q. Jin, Comput. Theor. Chem., 1013, 130-135 (2013).
- 34. H. J. Zhai, B. B. Averkiev, D. Y. Zubarev, L. S. Wang, and A. I. Boldyrev, *Angew. Chem. Int. Ed.*, 46, 4277-4280 (2007).
- 35. A. I. Boldyrev and L. S. Wang, Chem. Rev., 105, 3716-3757 (2005).