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Abstract—The chronic lead intoxication was modelled by injecting outbred rats intraperitoneally
with lead acetate 3 times a week for 5 weeks. Using an in vitro motility assay, it was shown that lead
intoxication causes changes in in vitro actin–myosin interaction, specifically, a decrease in the
maximum sliding velocity of native thin filaments over myosin isolated from the left ventricular
myocardium of the rat heart. No statistically significant changes were found in the calcium
sensitivity and cooperativity of the “pCa–velocity” curve, characteristics of the motile filament
fraction, and isometric force. Using electrophoretic separation of proteins, a shift in the ratio of
myosin heavy chains toward β�chains with a lower ATPase activity was found.
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Cardiovascular diseases are the main cause of
death in the world [1], and the impact of heavy
metals contributes to the incidence and exacerba�
tion of these pathologies [2]. Vast human subpop�
ulations, including the workers of industrial
enterprises and people living in the zone of their
technogenic influence, are exposed to heavy met�
als that pollute the surrounding atmosphere [2, 3].
Lead is the most abundant xenobiotic in the
human habitat. It is present in air, house dust,
soil, water, food, and varied consumption items.
Environmental lead accumulation is character�
ized by stability, creating conditions for toxic
exposures many years after the cessation of indus�
trial emissions.

Lead accumulates in human and animal bodies,
especially in bones, where its half�life averages
decades. It has been shown that there is no safe
level of lead in the blood, and its toxic effects are
present at levels much lower than supposed previ�
ously [2, 4–8].

The literature abounds in data on a toxic effect
of lead on all systems of the body, including the
cardiovascular [5, 9–17]. Meanwhile, the known
published data on the impact of lead on mechani�
cal activity of the myocardium are scarce, do not
cover all its aspects, and are, in part, contradic�
tory. The cardiotoxic effect of lead has not been
studied at the level of isolated proteins, despite the
suggestion that heavy metals affect directly the
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proteins involved in muscle contraction.
In the ventricular myocardium, there are three

myosin isoforms: V1, V2, and V3 [18]. The amino
acid sequence of isoforms V1 and V3 of mamma�
lian cardiac myosin is ≥ 93% identical [19]. Iso�
forms V1 (αα) and V3 (ββ) represent homodimers
containing two α� or β�myosin heavy chains
(MHC), respectively, while V2 (αβ) is a heterodi�
mer composed of one α� and one β�MHC [20].

In the ventricle of small mammals (e.g., mice
and rats), α�MHC is dominant [21–23]. How�
ever, gene expression of MHC isoforms in the
heart can change in response to the effect of thy�
roid hormones, hemodynamic load, or varied
pathological stimuli, including congestive heart
failure; in the myocardium of rodents, these pro�
cesses can proceed faster and to a larger extent
than in humans [22].

Mechanical characteristics of the actomyosin
complex depend on the isoforms of cardiac myo�
sin [20]. Using an in vitro motility assay, it was
found that the V1 isoform moves actin 2–3 times
faster than the V3 isoform [23–25] because V1 has
a higher cross�bridge cycling rate [23]. The iso�
metric force developed by the V1 and V3 isomyo�
sin heads is species�specific: in larger animals
(rabbits and pigs) the force developed by the V3
myosin head is higher than in V1, and in small
mammals (rats and mice), the forces are indistin�
guishable [23, 24, 26].

To study the cardiotoxic effect of lead salts, we
studied the functional characteristics and isoform
composition of myosin isolated from the left ven�
tricle of rats. The sliding velocity of thin filaments
over myosin was determined by an in vitro motil�
ity assay; the ratio of MHCs in the myocardium of
the control rat group and the group of rats with
chronic lead intoxication was investigated using
the electrophoretic separation of proteins.

MATERIALS AND METHODS

Intoxication model
The experiment was carried out on outbred

white male rats aged 4 months and weighing 300 g
at the beginning of the experiment. All rats were
kept under standard conditions, breathed unfil�
tered air, and were provided with a standard bal�
anced diet. Chronic lead intoxication (“Pb”

group) was simulated by intraperitoneal injection
of a lead acetate solution, 3 times a week for
5 weeks (up to 15 injections). A single dose was
12.5 mg of lead per 1 kg of body weight. The con�
trol group of rats (“C” group) received the same
volume of sterile distilled water according to a
similar scheme [27, 28].

Experiments were planned and carried out in
accordance with the principles of the Basel Dec�
laration and were approved by the Ethics Com�
mittee of the Institute of Immunology and
Physiology of the Ural Branch of the Russian
Academy of Sciences.

Protein extraction
Myosin was isolated from the left ventricle of

the rat heart using a standard method [29]. Actin
was obtained from rabbit skeletal muscles accord�
ing to the standard procedure [30], and after
polymerization was labeled with TRITC�phalloi�
din (Sigma�Aldrich, USA) by an addition of
2 mM ATP, 4 mM MgCl2, and 100 mM KCl.
Cardiac troponin was isolated from the pig hearts
as described elsewhere [31]. Recombinant human
tropomyosin was obtained as described in [32].
The use of contractile and regulatory proteins iso�
lated from different species in an in vitro motility
assay is a common practice [26, 33]. Regulated
thin filaments were reconstituted from actin, tro�
ponin and tropomyosin by mixing these proteins
at the following concentrations: 400 nM F�actin
labeled with rhodamine�phalloidin, 100 nM tro�
ponin and 100 nM tropomyosin at 4°C in a buffer
containing (in mM) 25 KCl, 25 imidazole,
4 MgCl2, 1 EGTA, and 10 DTT (pH 7.5). Native
thin filaments were extracted from the rat left ven�
tricle according to the Spiess protocol [34]. The
protein composition of the reconstituted and
native thin filaments was checked by electropho�
resis in polyacrylamide gel with sodium dodecyl
sulfate [35].

In vitro motility assay
An in vitro motility assay was used to determine

the sliding velocity of native and reconstituted
thin filaments, consisting of actin, troponin and
tropomyosin, over myosins extracted from the left
ventricle of rats of the “C” and “Pb” groups at
various calcium concentrations in solution. Cal�
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cium ions interact with a regulated thin filament
in a flow cell solution. Calcium binds to troponin
C and leads thereby to conformational changes in
the thin filament, due to which myosin�binding
sites on actin globules open. A mechanical actin–
myosin interaction can be evaluated by the char�
acteristics of how the filaments move and stop.
Changes in these characteristics, depending on
the calcium concentration in a solution with the
regulated thin filaments, make it possible to study
the mechanisms of calcium regulation of the
actin–myosin interaction [33]. Experiments in an
in vitro motility assay were carried out at 30°C as
described previously [26]. Fluorescently labeled
actin filaments in an experimental flow cell were
visualized using the Axiovert 200 inverted epifluo�
rescence microscope (Carl Zeiss, Germany)
equipped with a 100Ч/1.45 Plan�Fluar oil alpha�
objective. The movement of thin filaments over
the myosin�coated surface was recorded using the
EMCCD iXon�897BV camera (Andor Technol�
ogy, UK), while their velocity was analyzed using
the GMim�Pro software [36]. The dependence of
the sliding velocity of thin filaments on the cal�
cium concentration was analyzed using the Hill
equation:

V = Vmax (1 + 10h(pCa – pCa50))–1, (1)

where V and Vmax are the velocity and maximum
velocity at a saturating calcium concentration,
respectively, pCa50 (calcium sensitivity) is the
pCa value, at which a half of the maximum veloc�
ity is achieved, and h is the Hill cooperativity
coefficient.

Determining the relative isometric force developed 
by myosin in an in vitro motility assay

To determine the isometric force in an in vitro
motility assay, we used the “mixture protocol”, in
which the myosin under study was mixed with

noncycling NEM�modified myosin [37]. The lat�
ter, when attached to actin, prevents thin filament
sliding and serves as a load. The fraction of NEM�
modified myosin, needed to stop filament sliding,
is a measure of the relative force that the myosin
under study can develop.

Electrophoresis
Isoforms of rat myocardial MHC were deter�

mined by electrophoresis in a polyacrylamide gel
with sodium dodecyl sulfate [38]. After the com�
pletion of electrophoresis, the gel was stained with
Coomassie Brilliant Blue R250, then washed from
the stain and scanned with a densitometer
(BioRad, USA) to determine the percentage of α�
and β�MHCs.

Statistical analysis
The statistical significance of the intergroup

differences between the mean values of all the
obtained parameters was assessed using the non�
parametric Mann–Whitney U test; the differ�
ences were considered statistically significant at
p < 0.05. Data are expressed as mean ± SD.

RESULTS

Under the influence of chronic lead intoxica�
tion, the maximum sliding velocity of native thin
filaments over the left�ventricular myosin
decreased compared to the control group from
4.07 ± 0.13 to 3.27 ± 0.12 μm/s (Table 1), i.e. by
20% (Fig. 1). The calcium sensitivity and Hill
cooperativity coefficient were not significantly
distinguishable between groups “C” and “Pb”.

The characteristics of the dependence of the
fraction of motile filaments on the calcium con�
centration (the maximum value of the fraction,
pCa50, Hill cooperativity coefficient) were not
significantly different (Table 1, Fig. 2).

Table 1. Characteristics of “pCa–velocity” relationship in the left ventricle of rats of groups “C” and “Pb”*

Vmax, μm/s pCa50 h

C 4.07 ± 0.13 6.63 ± 0.02 2.3 ± 0.3

Pb 3.27 ± 0.12* 6.58 ± 0.03 2.2 ± 0.3

Vmax—maximum sliding velocity of native thin filaments over myosin in the left ventricle, pCa50—calcium sen�
sitivity, h—Hill cooperativity coefficient. Data presented as mean ± SD. Upper index (*) marks the values that
are different vs. control (p < 0.05, Mann–Whitney U test).
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Lead intoxication reduces the maximum sliding
velocity of native thin filaments over myosin, but
does not affect calcium sensitivity and the Hill
cooperativity coefficient. The curve of the depen�
dence of the fraction of motile filaments on the
calcium concentration shows no significant dif�
ferences in all parameters, but there is a clear ten�
dency toward a decrease in the fraction under the
influence of lead.

Under the influence of chronic lead intoxi�
cation, there was a significant shift in the ratio
of MHCs toward an increase in the content of
β�chains with a lower ATPase activity (55 ± 10%
α�MHC and 45 ± 10% β�MHC in group “Pb”,
and 86 ± 4% α�MHC and 14 ± 4% β�MHC in
group “C”).

To stop the motility of reconstituted thin fila�
ments over the left�ventricular myosin in groups
“C” and “Pb”, 34 ± 4% and 42 ± 6% of NEM�
modified myosin were required, respectively. This
difference was statistically nonsignificant (Fig. 3).

DISCUSSION

Studies of the influence of chronic lead intoxi�
cation on isolated multicellular preparations of
the left ventricle showed that the force of isomet�
ric contraction of papillary muscles did not
change when changing calcium cycle parameters
in cardiomyocytes [39, 40].

Previously, we studied the characteristics of the
actin–myosin interaction and contraction of
multicellular preparations (trabeculae and papil�

lary muscles) of the right ventricle when exposed
to lead ions. It was shown that the maximum slid�
ing velocity of reconstituted thin filaments over
right�ventricular myosin decreased under the
influence of lead intoxication [27], and the ratio of
MHC isoforms shifted toward the slower β�chains
[28]. In multicellular preparations of the right
ventricle of the same rats that were used in our
study, we found an increase in the cross�sectional
area of trabeculae and papillary muscles, a
decrease in passive (diastolic) mechanical ten�
sion, a decrease in the maximum rate of isometric
force development and the rate of isotonic short�
ening of papillary muscles [27].

In our experiments using native thin filaments
and myosin from the left ventricle, a similar ten�
dency was observed, namely the maximum veloc�
ity of actin–myosin interaction dropped under
the influence of chronic lead intoxication by 20%
compared to the control group. This was
explained by a shift in the α�MHC/β�MHC ratio:
an 31% increase in the content of β�chains with a

Fig. 1. Dependence of the sliding velocity of native thin filaments (a) and the fraction of motile filaments (b) over left�ventric�
ular myosin in rats of groups “C” and “Pb” on calcium concentration in solution. pCa is a negative decimal logarithm of cal�
cium concentration. The regression curve fits the Hill equation. Velocity is represented as mean ± SD for 4 experiments.

Fig. 2. Representative electrophoregram to demonstrate a
ratio of α� and β�MHCs in the left ventricle of rats in groups
“C” (left) and “Pb” (right). Group “C” (left) – 86 ± 4% α�
MHC and 14 ± 4% β�MHC. Group “Pb” (right) – 55 ±
10% α�MHC and 45 ± 10 % β�MHC. 
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lower ATPase activity and a lower actin�myosin
cross�bridge cycling rate. Such a change can be an
adaptive energy�saving molecular mechanism in
cardiac pathologies [25, 41]. The characteristics
of the fraction of motile filaments were statisti�
cally indistinguishable; however, there was a ten�
dency toward a decrease in this parameter during
lead intoxication.

The differences between groups “C” and “Pb”
in the NEM�modified myosin amount required to
completely stop the motility of thin reconstituted
filaments were statistically insignificant, which
can be explained by the absence of differences in
the force developed by myosin isoforms in small
mammals (rats and mice) [23, 24, 26], although
there was a small tendency toward an increase in
the isometric force in the left�ventricular myosin
of group “Pb”. This effect may be worth a deeper
investigation.

Thus, when studying the functional character�
istics and myosin isoform composition in the left
ventricle of rats with chronic lead intoxication, we
revealed a decrease in the rate of actin�myosin
interaction and a shift in the ratio of MHCs
toward β�chain. These results, along with the
aforementioned changes in the contractile char�
acteristics of multicellular right�ventricular
preparations of the same rats [27, 28], may result

from the development of myocardial hypertrophy
caused by pressure overload [28, 42, 43]. The
assumption on possible myocardial hypertrophy
due to lead intoxication indirectly confirms the
increase in the relative heart weight in these rats,
as calculated per 100 g of body weight, and in the
amplitude of the QRS complex on the electrocar�
diogram [28], as well as an increase in pressure
and the thickness of cardiomyocytes of the left
ventricle in rats intoxicated with lower lead doses
[44]. Thus, with a professional and environmen�
tally conditioned lead load on the organism, there
arises an increased risk of cardiovascular pathol�
ogy, which may be associated, among other
things, with myocardial contractile dysfunction at
the molecular level.
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