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Abstract—The paper presents the results of studying the natural frequencies of circular truncated con-
ical shells, the thickness of which varies according to different laws. The behavior of the elastic struc-
ture is described in the framework of the classical theory of shells based onthe Kirchhoff–Love
hypotheses. The corresponding geometric and physical relations together with the equations of
motion are reduced toasystem of ordinary differential equations for new variables. The solution to the
formulated boundary value problem is found using Godunov orthogonal sweep method involving the
numerical integration of differential equations by the Runge–Kutta fourth order method. The natural
frequencies of vibrations are evaluated using a combination of a step-wise procedure and subsequent
refinement by the interval bisection method. The reliability of the results is verified by comparison
with the known numerical-analytical solutions. Thedependences of the minimum vibration frequen-
cies obtained at shell thicknesses subject to a power-law variation (linear and quadratic, with symmet-
ric and asymmetric shapes) and harmonic variation (with positive and negative curvature) are investi-
gated for shells withdifferent combinations of boundary conditions (simply supported, rigidly
clamped, and cantilevered support), cone angles and linear sizes. The results of the study confirm the
existence of configurations that provide a significant increase in the frequency spectrum compared to
shells of constant thickness under the same limitations on the structure weight.

Keywords: classical shell theory, conical shell, Godunov orthogonal sweep method, natural vibrations,
variable thickness
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1. INTRODUCTION

As we know [1], applied problems require maximization of the minimum (fundamental) vibration
mode to expand the resonanceless frequency range of the structure in order to increase its operational
characteristics. For shells of revolution, as structural elements with a variety of technical applications, an
increase in the lower vibration frequency along with the choice of suitable boundary conditions, geometric
dimensions, variable stiffness, initial stresses, reinforcement angles and others [2–6] can also be achieved
by specifying a varied wall thickness [7]. For truncated conical shells, which are the focus of this work, the
effect of thickness varying along the length in some way on the frequency spectrum was also estimated in
[8–26]. These works present the results of studying the effect of various parameters on the free vibrations
of isotropic, orthotropic, composite, layered and reinforced shells, the wall thickness of which changes
according to power, exponential or harmonic laws, based on numerical and numerical-analytical methods
(collocations, wavelet analysis, Rayleigh–Ritz method, power series expansions, finite elements, or dis-
crete orthonormalization). But among these publications, only in [17–19, 21] the focus is on maximizing
the lower vibration frequency relative to the reference, which is taken as the frequency of a shell with a con-
stant thickness and equivalent mass. In addition, the research is limited only to the case of a linear change
in thickness. A similar discussion of cylindrical shells in [27, 28] was carried out for a larger number of
thickness variations. At the same time, it is noted that the variation of the wall thickness according to the
quadratic law most significantly affects the increase of the fundamental frequency. The purpose of this
work is to perform a similar analysis for conical shells, involving more varied laws of thickness variation
along the length than those presented in literature.
1222
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Fig. 1. Computational model.
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Fig. 2. Longitudinal section of the shell walls with different versions of changing the thickness: V1—linear asymmetric;
V2—linear symmetric; V3—quadratic asymmetric; V4—quadratic symmetric; V5—harmonic convex; V6—harmonic
concave.
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2. PROBLEM SETUP

Let us consider a truncated conical shell (Fig. 1) with a minimum radius , apex angle  and genera-
trix length . The shell wall thickness  varies along the length of the generatrix and is mathemati-
cally described as . Here  is the equivalent thickness calculated relative to the reference thick-
ness , and  is the function of the meridian coordinate , determining the law of thickness variation.

Figure 2 presents the variants of shell wall thicknesses, which correspond to the function  of the
form:

where  and  is the thickness variability coefficient. The value of  is calculated from the condition
of mass equivalence with the reference shell according to the following formulas:
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1224 BOCHKAREV
As can be seen from the formulas, at  the shell thickness is constant and equal to .
Thus, the problem is to study the effect of the thickness, described by different laws, on the frequency

spectrum of the truncated conical shell both for its different linear size and for kinematic boundary con-
ditions set at the edges based on the condition of mass equivalence for a specific cone angle.

3. FUNDAMENTAL RELATIONS
Within the classical shell theory based on the Kirchhoff–Love hypotheses, the components of the

deformation vector  in a curvilinear coordinate system  can be represented as [29]:

where

(1)

Here,  are Lamé coefficients;  are curvatures; u, , w are meridian, circumferential and normal
components of the shell displacement vector; and  are rotation angles of the nondeformable normal.

The physical relations establishing the relationship between the vector of forces and moments
 and the vector of generalized deformations ,

are written in matrix form as

(2)

Here, the quantities making up the stiffness matrix D are functions of the meridian coordinate  and are
calculated by the formulas:

(3)

where the coefficients  are determined in a known manner [29] with respect to the elastic moduli
( ), Poisson’s ratio ( ) and shear modulus ( ) of the shell material.

The equations of motion for the shell are:

(4)

where  are shear forces and ,  is the density of the material.

Expanding all the parameters describing the behavior of the truncated conical shell in Fourier series in
the circumferential coordinate θ
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we reduce the geometric (1) and physical (2) relations, as well as the equations of motion (4) to a system
of eight ordinary differential equations of the first order in new variables [29]:

Here, , where j is the harmonic order in Fourier series expansion. Taking this into account and
seeking a solution in the form , we write the desired system as follows:

(5)

where

(6)

ω is the vibration frequency, . The quantities included in expressions (6), taking into account (1)
and (2), are calculated by the formulas:

Let us set homogeneous boundary conditions at the edges of the shell:

(7)

(8)

where for known kinematic and static boundary conditions  and , respectively.
Let us now solve system (5) with boundary conditions (7) and (8) using the Godunov orthogonal sweep

method [30] with numerical integration of differential equations by the Runge–Kutta fourth order
method. To do this, we represent its general solution in the form:

where  are certain constants and  is the set of linearly independent solutions satisfying the boundary
conditions (7). As a result of integration over a given interval and satisfaction of boundary conditions (8)
we obtain the following algebraic system to determine the constants :

(9)

Thus, the problem is reduced to calculating the values of , for which there is a nontrivial solution to sys-
tem (9). A necessary condition is the equality to zero of the determinant of the matrix . For this
purpose, let us use a combination of the step method and the bisection method. Using the former we cal-
culate such values of , at which the determinant of  changes sign, and using the latter we specify 
in the obtained range of their values.

4. NUMERICAL RESULTS
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Fig. 3. Longitudinal sections of the shell walls with different versions of changing the thickness and equivalent masses at
the values of the parameter : 2 (a); 5 (b).
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tilevered support ( , CF). To represent the results, we use the

dimensionless frequency  or the frequency ratio , where  corresponds to
the minimum vibration frequency of a shell of constant thickness at the same cone angle. The variability
of the thickness is set using the parameter , where  and  are maximum and
minimum wall thickness. Figure 3 shows the profile examples of shells with a mass equivalent to the ref-
erence mass for different values of the parameter β and different laws of thickness variation.

To verify the algorithm described above, we compared the results obtained by it with the data for a con-
ical shell of constant thickness from [31–33] at , , . Table 1 shows the values
of the dimensionless minimum frequencies  corresponding to the first nine circumferential vibration
modes  for shells with different boundary conditions. In the case of shells of variable thickness, a com-
parison was made with the solution from [18], which was obtained by the finite element method. Mini-
mum vibration frequencies  (Hz) and their respective harmonic orders , calculated in the present work
for a rigidly clamped (CC) conical shell at GPa, GPa, GPa, ,

kg/m3, , m and thickness varying according to symmetric linear law (ver-
sion V2), are presented in Table 2 for various cone angles , linear size  and different values of the
thickness variability parameter . The data in Tables 1 and 2 shows that the results are in good agreement
with the previously published results of numerical-analytical and numerical solutions.

Figures 4a, 5a, and 6a present dependences of dimensionless frequencies  on the cone angle , cal-
culated for different values of the circumferential harmonic  for different combinations of boundary con-
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Table 1. Comparison of the dimensionless lower vibration frequencies  of a conical shell ( ) of constant
thickness under various boundary conditions

Circumferential
harmonic 

Simply supported (SS) Rigidly clamped (CC)

 [31]  [32]  [33] calculated 
value  [31]  [32]  [33] calculated 

value

1 0.5463 0.5462 0.5462 0.5462 0.8120 0.8120 0.8120 0.8119
2 0.6310 0.6310 0.6309 0.6309 0.6696 0.6696 0.6696 0.6695
3 0.5062 0.5065 0.5061 0.5061 0.5428 0.5430 0.5428 0.5427
4 0.3942 0.3947 0.3941 0.3941 0.4566 0.4570 0.4565 0.4564
5 0.3340 0.3348 0.3337 0.3337 0.4089 0.4095 0.4088 0.4087
6 0.3239 0.3248 0.3235 0.3235 0.3963 0.3970 0.3961 0.3960
7 0.3514 0.3524 0.3510 0.3510 0.4143 0.4151 0.4141 0.4139
8 0.4023 0.4033 0.4019 0.4019 0.4568 0.4577 0.4567 0.4565
9 0.4676 0.4684 0.4671 0.4671 0.5177 0.5186 0.5175 0.5173

λ α = °45

j
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Table 2. Comparison of the minimum vibration frequencies  (Hz) of a rigidly clamped (CC) conical shell of vari-
able thickness (V2) at different values of the cone angles , linear size  and thickness variability parameter 

α, deg
 [18] calculated 

value  [18] calculated 
value  [18] calculated 

value  [18] calculated 
value

15 1 5021.83 9 5024.54 1815.93 9 1817.83 854.72 8 855.43 347.69 7 347.36
3 6280.01 9 6280.59 2145.69 10 2145.25 954.92 9 953.85 371.42 8 370.30
5 6842.47 9 6833.77 2296.27 10 2293.12 1005.08 9 1002.64 384.44 8 382.67

30 1 4905.77 8 4908.28 1677.56 9 1679.16 740.18 8 740.45 281.25 8 281.09
3 6158.04 9 6158.33 2001.63 10 2001.42 837.58 10 837.13 302.46 10 301.84
5 6717.63 9 6708.44 2148.51 10 2145.81 879.96 10 878.27 311.65 11 310.57

45 1 4763.09 8 4765.17 1527.07 8 1528.19 628.35 8 628.71 225.35 9 225.46
3 6010.19 7 6010.92 1844.52 9 1844.50 718.11 9 717.52 243.68 11 243.32
5 6566.66 7 6557.87 1988.18 10 1985.78 757.47 10 756.27 251.56 12 250.85

60 1 4606.77 6 4608.56 1368.59 7 1369.53 512.32 8 512.95 172.03 8 172.06
3 5848.06 5 5848.54 1679.73 8 1679.88 593.62 9 593.56 187.94 10 187.74
5 6403.42 5 6394.11 1819.28 8 1817.14 630.39 9 629.58 195.26 11 194.82

ω
α 1R l β

β
=1 0.5R l =1 1R l =1 2R l =1 5R l

j j j j
ditions set at the edges of a conical shell of constant thickness ( , ). These data demonstrate=1 2R l β = 1
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Fig. 4. Dependences of dimensionless  (a) and normalized  (b–d) frequencies on the cone angle  of a simply sup-
ported shell with values of the thickness variability parameter : 1 (a), 2 (b), 5 (c), 8 (d).
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Fig. 5. Dependences of dimensionless  (a) and normalized  (b–d) frequencies on the cone angle  of a rigidly
clamped shell with values of the thickness variability parameter : 1 (a), 2 (b), 5 (c), 8 (d).
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a significant dependence of the circumferential vibration mode with the minimum frequency on the cone
angle α, especially in the case of symmetric (SS and CC) boundary conditions. For the same boundary
conditions, increasing the cone angle to a certain value leads to a noticeable increase in the minimum
vibration frequency, which in itself can serve as an obvious design solution aimed at maximizing the fre-
quency spectrum.

The rest of the graphs in Figs. 4–6 reflect the effect of the cone angle  on the frequency ratio ,
obtained with different laws of thickness variation and different values of the variability parameter . Here,
ω is the smallest value in the frequency spectrum corresponding to several circumferential harmonics. The
nonmonotonic nature of the curves is largely due to the change in the circumferential harmonic with a
minimum vibration frequency. Such a transformation can occur both for shells with constant (as reflected
in all curves) and variable profiles. The demonstrated dependences clearly illustrate the advantages or dis-
advantages of a variable profile in comparison with a constant one for shells with different combinations
of boundary conditions and the same weight at a specific value of the cone angle.

Summarizing the data shown in Figs. 4–6, we can conclude:
1) There is no universal law of thickness variation suitable for various boundary conditions; every law

behaves in a specific way for a particular configuration.
2) For some laws of thickness variation that are most suitable for certain boundary conditions, an

increase in the variability parameter  leads to an increase in the minimum vibration frequency.
3) For the same laws, an increase in the cone angle  and the associated increment of the lateral surface

of the shell lead to a significant increase in the minimum vibration frequency, especially in the case of can-
tilever support.

The most complex picture appears in the case of simply supported shells (Figs. 4b–4d). Here, in cer-
tain ranges of cone angles, it is preferable to use either asymmetrical or any of the symmetrical profiles.

α ω ω0

β

β
α
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Fig. 6. Dependences of dimensionless  (a) and normalized  (b–d) frequencies on the cone angle  of a cantilevered
shell with values of the thickness variability parameter : 1 (a), 2 (b), 5 (c), 8 (d).
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Under the same boundary conditions, the convex harmonic profile (version V5) shows its advantages over
other configurations uniquely at  and for a narrow range of . For a counter case, one can reference
[34], which shows that for a cylindrical shell loaded with a uniform axial force, this law of thickness vari-
ation with rigid edge restraint provides the most effective stability parameters.

Based on the data obtained, it can be concluded that the applicability of symmetric and asymmetric
profiles is uniquely determined by the specified boundary conditions. In the case of two-sided rigid
clamped (see Figs. 5b–5d) each of the symmetrical profiles has an advantage at any cone angle, guaran-
teeing an increase in the minimum frequency even in comparison with a cylindrical shell of constant
thickness. On the contrary, examples with a cantilever boundary condition (see Figs. 6b–6d, the shell is
supported along the edge with the maximum thickness), demonstrate a clear superiority of asymmetric
thickness variation in comparison with symmetrical. The only exception is the version with , where
the V4 profile with a small cone angle is more effective.

Note also that, with rare exceptions under such boundary conditions the variable wall thickness pro-
vides higher frequency values, in comparison with the uniform distribution of mass along the meridian
coordinate.

The results obtained for other geometrical sizes and summarized in Table 3 demonstrate that both for
very short ( ) and for longer shells ( ) the above dependences are not observed only under
the free support condition. But, while for these boundary conditions the asymmetric profiles V1 and V3
are inferior to the symmetric in the case of short shells at large cone angles, for longer shells they con-
versely guarantee an increase in the vibration frequency in the entire variation range of cone angle. More-
over, the use of long shells with a symmetrical profile becomes unreasonable due to the deterioration of
characteristics in comparison with shells of constant thickness. Quantitative differences in the minimum
vibration frequencies of shells with variable and constant thicknesses depend both on the geometric size

β = 2 α

β = 5

=1 0.5R l >1 5R l
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Table 3. Normalized frequencies  of a shell of variable thickness under different boundary conditions

α, 
deg V1 V2 V3 V4 V5 V6 V1 V2 V3 V4 V5 V6 V1 V2 V3 V4 V5 V6

Simply supported (SS)
0 0.992 1.036 1.002 1.042 0.957 1.043 1.000 0.981 0.995 0.980 1.020 0.980 0.997 0.986 0.994 0.987 1.007 0.986

0.959 1.095 0.993 1.125 0.893 1.121 0.995 0.955 0.989 0.964 1.034 0.961 0.986 0.948 0.975 0.934 1.006 0.943
0.932 1.105 0.984 1.035 0.858 1.031 0.989 0.936 0.983 0.956 1.034 0.950 0.978 0.920 0.960 0.929 1.002 0.921

15 0.991 1.042 1.003 1.049 0.960 1.050 1.054 0.967 1.050 0.958 1.042 0.959 1.076 1.001 1.085 0.996 1.019 0.998
0.957 1.105 0.992 1.107 0.889 1.103 1.105 0.961 1.123 0.961 1.035 0.964 1.149 1.000 1.197 0.974 1.042 0.979
0.931 1.086 0.982 1.030 0.854 1.025 1.111 0.960 1.150 0.982 1.027 0.983 1.169 0.988 1.209 0.973 1.048 0.977

30 0.988 1.044 1.001 1.052 0.955 1.053 1.061 0.981 1.064 0.972 0.996 0.974 1.092 1.000 1.097 0.988 0.990 0.990
0.949 1.104 0.986 1.095 0.883 1.090 1.110 0.982 1.137 0.960 0.991 0.965 1.155 0.945 1.129 0.911 0.989 0.914
0.919 1.071 0.973 1.045 0.847 1.039 1.120 0.977 1.137 0.965 0.986 0.969 1.165 0.927 1.118 0.889 0.988 0.894

45 0.983 1.050 0.997 1.060 0.950 1.061 1.071 1.008 1.082 0.997 1.008 0.998 1.076 0.975 1.072 0.964 0.997 0.962
0.933 1.033 0.972 1.040 0.880 1.035 1.124 0.988 1.125 0.959 1.005 0.963 1.115 0.917 1.081 0.877 0.959 0.878
0.902 1.014 0.954 1.016 0.839 1.008 1.132 0.977 1.114 0.959 0.987 0.963 1.118 0.896 1.062 0.855 0.943 0.859

60 0.976 1.049 0.990 1.061 0.952 1.062 1.066 1.001 1.071 0.991 1.000 0.992 1.058 0.959 1.047 0.949 0.987 0.948
0.953 0.988 0.960 1.005 0.887 0.999 1.099 0.977 1.089 0.952 0.984 0.956 1.083 0.901 1.046 0.865 0.951 0.867
0.930 0.973 0.935 0.993 0.844 0.984 1.097 0.968 1.072 0.955 0.963 0.959 1.081 0.882 1.026 0.849 0.930 0.852

75 0.983 0.956 0.975 0.962 1.004 0.959 1.035 0.993 1.037 0.984 0.975 0.986 1.045 0.966 1.037 0.956 0.989 0.955
0.923 0.882 0.898 0.907 0.949 0.898 1.045 0.978 1.039 0.959 0.952 0.964 1.057 0.915 1.025 0.885 0.954 0.887
0.888 0.855 0.855 0.891 0.907 0.880 1.035 0.975 1.019 0.971 0.940 0.976 1.047 0.900 1.001 0.876 0.941 0.879

Rigidly clamped (CC)
0 0.987 1.091 1.012 1.105 0.895 1.108 0.995 1.012 0.997 1.018 1.011 1.018 0.996 0.992 0.992 0.997 1.031 0.997

0.942 1.204 0.993 1.226 0.787 1.239 0.976 1.042 0.986 0.998 0.974 1.005 0.979 1.034 0.978 1.032 1.065 1.040
0.916 1.256 0.970 1.272 0.737 1.295 0.962 1.046 0.976 1.015 0.929 1.027 0.967 1.062 0.968 1.007 1.010 1.024

15 0.982 1.096 1.009 1.112 0.895 1.114 0.998 0.997 1.006 0.993 0.955 0.994 1.013 1.025 1.023 1.019 0.991 1.018
0.932 1.211 0.983 1.239 0.782 1.251 0.974 1.024 0.992 0.992 0.917 1.001 0.999 1.016 1.019 0.979 0.926 0.983
0.903 1.264 0.959 1.286 0.736 1.309 0.954 1.035 0.976 0.985 0.901 0.999 0.981 1.015 0.997 0.954 0.890 0.964

30 0.976 1.097 1.004 1.115 0.889 1.118 1.000 1.018 1.004 1.012 0.957 1.015 1.000 0.997 1.006 0.993 0.962 0.993
0.918 1.218 0.972 1.252 0.774 1.265 0.971 1.026 0.985 0.991 0.914 0.998 0.971 0.975 0.963 0.953 0.916 0.958
0.887 1.272 0.943 1.304 0.726 1.327 0.948 1.033 0.960 0.977 0.883 0.989 0.947 0.983 0.933 0.968 0.877 0.979

45 0.972 1.107 1.004 1.131 0.887 1.133 0.996 1.023 1.004 1.016 0.971 1.018 0.993 0.994 0.991 0.991 0.973 0.991
0.909 1.235 0.966 1.284 0.763 1.297 0.961 1.026 0.966 0.994 0.901 0.999 0.950 1.026 0.953 1.017 0.910 1.027
0.875 1.294 0.935 1.341 0.712 1.366 0.934 1.035 0.934 0.978 0.871 0.989 0.923 1.053 0.929 1.064 0.877 1.078

60 0.968 1.115 1.003 1.147 0.872 1.149 0.988 1.024 0.992 1.018 0.966 1.020 0.980 0.999 0.981 0.995 0.976 0.996
0.895 1.259 0.961 1.329 0.743 1.343 0.940 1.033 0.945 1.003 0.896 1.009 0.934 1.043 0.943 1.036 0.919 1.046
0.856 1.324 0.924 1.398 0.691 1.424 0.910 1.045 0.909 0.990 0.865 1.001 0.905 1.073 0.917 1.087 0.883 1.101

75 0.968 1.138 1.012 1.188 0.848 1.189 0.974 1.033 0.980 1.028 0.954 1.030 0.969 0.999 0.972 1.000 0.973 0.998
0.887 1.311 0.967 1.423 0.707 1.438 0.914 1.070 0.924 1.038 0.888 1.045 0.914 1.008 0.910 0.992 0.912 1.000
0.839 1.391 0.924 1.512 0.654 1.542 0.881 1.086 0.887 1.034 0.850 1.049 0.881 1.027 0.877 1.022 0.883 1.035

Cantilevered support (CF)
0 1.063 1.013 1.061 1.020 0.990 1.019 0.951 1.086 0.949 1.109 0.982 1.108 1.031 1.062 1.035 1.084 0.979 1.083

1.159 1.016 1.131 1.020 0.970 1.014 1.004 1.061 1.014 1.042 1.012 1.038 1.167 1.153 1.223 1.273 0.986 1.255
1.210 0.990 1.161 0.996 0.953 0.984 1.054 1.027 1.008 0.999 0.961 0.992 1.246 1.186 1.181 1.366 0.989 1.334

ω ω0

=1 0.5R l =1 5R l =1 10R l
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and on the specified boundary conditions. For simply supported shells the frequency ration  reaches
maximum for a short shell: at , for rigidly clamped shells, at , and for cantilevered sup-
port the value of  increases with the increase in the  ratio.

5. CONCLUSIONS

We present the results of numerical study of the frequency spectrum of truncated circular conical
shells, the wall thickness of which varies along the meridian coordinate according to the power law or har-
monic law. We analyzed the influence of boundary conditions, geometric size, thickness variability
parameter, and cone angle on the natural vibration frequencies of the structure. The frequencies obtained
for shells with constant and variable thicknesses are compared, under the condition that their masses are
equivalent. For shells, the thickness of which is a function of the meridian coordinate, we obtained com-
binations of boundary conditions, the law of thickness variation with a symmetric/asymmetric wall profile
or positive/negative curvature of the lateral surface, linear size, etc., at which there is a significant increase
in the minimum frequencies compared to a shell of constant thickness. It is shown that for specific bound-
ary conditions, by selecting a number of parameters, one can significantly maximize the minimum vibra-
tion frequency while keeping the shell mass (at a certain cone angle) unchanged.
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