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Abstract—A mathematical model of a solid body with mesoscopic defects is presented and validated.
The constitutive relations proposed earlier allow describing the deformation behavior of typical elas-
tic-viscoplastic materials (metals and alloys) in a wide range of strain rates, temperatures, and stresses.
Methods for identifying unknown parameters of the model by solving a number of independent opti-
mization problems using data from independent experiments are developed and implemented. For
identification we use both the results of a literature review and experimental data. The experimental
study on high-speed collision of a cylindrical specimen with an obstacle in the form of a bar (Taylor–
Hopkinson test) is carried out by recording the temperature field in the course of deformation. The
data are used to verify the model. For comparison the calculations are performed in the three-dimen-
sional statement and in the axisymmetric statement. The formulated boundary value problems are
solved numerically by the finite element method. The results of numerical calculations are in good
agreement with the experimental data: the shape of the specimen after collision and the measured tem-
perature (mechanical energy dissipation during inelastic deformation) coincide. This confirms the
adequacy of the developed mathematical model and indicates that it can be used to solve both funda-
mental and applied problems of solid mechanics. The analysis of parallelism efficiency shows that the
use of eight cores yields a five-fold acceleration and, as the number of cores increases further, this trend
presumably continues.

Keywords: metals, alloys, dynamic loading, Hopkinson–Kolsky bar, Taylor test, elastic-viscoplastic
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1. INTRODUCTION
It is a topical task of modern machinery and aviation manufacture to predict the strength characteris-

tics of the corresponding structures in their design stage by means of numerical modeling. For this pur-
pose we need development of such constitutive relations (CRs) that allow computing the response of the
material to applied loads in a wide range of stresses, strains, and temperatures, including the complex
stress–strain state. Building a CR is related with introduction of internal variables and a large number of
parameters to be determined. As a rule, the parameters are found from relatively simple experiments on
uniaxial tension/compression. However, for adequate description of behavior of real structures, the equa-
tions with these parameters must enable computing the three-dimensional stress–strain state. Therefore,
the constructed mathematical models are necessarily verified after parameter identification.

One of the ways for verification is the Taylor test [1], which is an experiment consisting in high-speed
collision between a bar and a rigid obstacle. In the course of experiment, the inhomogeneous stress–strain
state is realized in the bar made of the studied material, and the strain rates achieve 105 s−1. This experi-
ment allows determining the mechanical characteristics of material, in particular, the dynamical yield
limit [2–4]. By means of this technique the following materials are investigated: titanium alloys [5, 6],
steels [7], copper [8, 9], and aluminum alloys [9–11], including porous ones [12]. The model verification
includes the calculation corresponding to the experiment and the comparison of the bar shape computed
with account for deformation with the shape acquired in the experiment. A similar method of verification
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Fig. 1. Scheme of experiment: 1 the steel bar with a diameter of 25 mm, 2 the specimen (impactor), 3 the field of sight of
the infrared camera at the specimen surface, 4 shutoff, 5 guideway, and 6 the barrel of the gun; the arrow shows the impact
direction.

1 2 3 4 5 6
is widely used for different models: the Johnson–Cook model [13], the Zerilli–Armstrong model [14], the
models with linear hardening [2], and other models [8, 15].

The current paper is aimed at checking the adequacy of the proposed solid body model using the Taylor
test. The verification is performed on an example of AMg6 alloy, a material widely used in aircraft engine
manufacturing.

2. EXPERIMENTAL FORMULATION

The experimental scheme is given in Fig. 1. The specimens had the shape of cylinder with a diameter
of 12 mm and a length of 80 mm. To increase the coefficient of the surface radiation of the specimen at its
heating (which is required for infrared measurements of the surface temperature), the specimens were
covered by a thin layer of soot. To center the specimens in the barrel of the pneumatic gun, we plotted the
bottom plates and the guideways on a 3D printer (Fig. 2). The guideway was made so that it easily breaks
at the interaction with the shutoff ring mounted at the barrel output and does not intercept the field of
view of the infrared camera. The specimen was accelerated in the barrel until the prescribed speed. At col-
lision with the shutoff and destruction, the guideway lost its speed. This allowed recording the surface
temperature of the specimen in the field of view of camera 3 (Fig. 1) during 250 μs after the collision
between the specimen and the steel bar. We applied the FLIR SC5010 high-speed infrared camera. The
range between the frames was 50 μs. The camera was preliminarily calibrated in the temperature range
20−150°C using the test sample as the measurement object. This is caused by the fact that at the chosen
framing rate (20 000 frames/s) the range of rising temperatures was a priori outside the range of default
camera options. In addition, to avoid large spreading of characteristics of different pixels of the digital
camera matrix, we required individual calibration for each pixel. Imaging of specimen 2 was carried out
before and during the collision with obstacle 1 (Fig. 1). From the measurement data the surface tempera-
ture of the undeformed specimen was 29°C. The alignment of the impact was provided by the bottom plate
and guideway 5 made of plastic (Fig. 2); shutoff 4 was applied to ensure visibility in the region where the
surface temperature was determined.

The experimental results are presented below together with the calculation results.
Samples made of AMg6 alloy were annealed at a temperature of 500°C over 4 hours. This regime was

selected by the results of study [16], where it was established that, with differential scanning calorimetry
of deformed specimens made of this alloy, the release of the energy accumulated during plastic deforma-
tion is terminated at temperatures of 350−400°C.

3. SYSTEM OF FIELD EQUATIONS

The complete system of field equations for describing the deformation behavior of material has the
form

(1)

(2)

∇ ⋅� =ρ ,v σ

+ ∇ ⋅�ρ ρ = 0,v
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(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

In expressions (1)–(11) we use the following denotations:  is the mass density,  is the velocity vector (a
dot above the symbol means the material derivative of this variable), , , and  is the stress tensor and
its spherical and deviatoric parts,  is the gradient operator in the current configuration,  is the strain

rate tensor,  is the plastic strain tensor,  and  are elastic moduli of material,  is the identity tensor,
 is the strain rate intensity,  s−1, is the nondimensionalization factor,  is the

Boltzmann constant, , , and  are positive kinetic coefficients,  and  are constants responsible
for strain rate sensitivity of the material,  is the potential of the nonequilibrium Helmholtz free energy,

 is the tensor of microshear density,  is the microshear intensity,  is the specific heat capacity,
 is the heat transfer coefficient,  is the temperature,  is the Laplace operator, , , and  are

approximation constants of the Helmholtz free energy ,  and  are approximation constants of the
characteristic energy of activation , and  is the orthogonal tensor of the polar decomposition of the
deformation gradient , where  is the right symmetric positive definite distortion tensor.

The wide-range constitutive relations (5), (7), and (8) were proposed in the general form in [17]. The
structure of the equations and the approximation for the potential of the nonequilibrium free energy (10)
were proposed in [18, 19]. In [20, 21] the dependences for the characteristic relaxation times were
described. In work [22] the authors specified the form of approximation for the energy of activation (9).
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Fig. 2. Shapes of (a) bottom plate and (b) guideway for the specimen.
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Fig. 3. Calculation (solid line) and experimental (dotted line) strain diagrams. 
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In [23] the fractions of dissipated and stored energy of inelastic deformation (11) were determined. The
relations used for Hooke’s law (5) were justified in [24], and the relations for the objective Green–Naghdi
derivative (6) in elastic-viscoplastic relations were justified in work [25].

4. IDENTIFICATION OF MODEL PARAMETERS

The kinetic coefficients , , and  were determined from the solution of the minimization prob-
lem of the residue between the experimental and the calculated strain diagrams at a characteristic strain
rate of 1 s−1 and a temperature of 25°C. The result of the numerical modeling compared with the experi-
mental data is given in Fig. 3. In plotting diagrams we used the logarithmic strain measure and the true
stresses.

The parameters responsible for strain rate sensitivity of material (  and ) were determined by the
experimental values of the yield limit at different strain rates. The initial data are the values of the kinetic
coefficients obtained at the previous step. The tests were performed at a temperature of 25°C. As the yield
limit, we took the stress for the inelastic strain value of 0.2%. The result is presented in Table 1.

The constants responsible for the thermal softening (  and ) were identified by solving the problem
of minimization of the difference between the experimental and calculated yield limits at a characteristic
strain rate of 1 s−1 and different temperatures. The results are contained in Table 2.

The complete set of constants for the AMg6 alloy is listed below:
−The constants known from the literature [27]:  kg/m3,  GPa,  GPa, c =

922 J/(kg K), and  W/(m K).

−The identif ied constants:  (Pa s)−1,  (Pa s)−1, and 
10–9 (Pa s)−1; , °C, .

−The approximation constants of the thermodynamic potential : , ,
, , and ; the value of the constant  is computed exactly from the equation

 following from the condition .

The bar which, in contrast to the impactor made of AMg6, is made of high-strength martensite-aging
steel 02N18K9M5T-VI ( GPa), was described by the constitutive relations of the linear theory of
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Table 1. Calculated and experimental yield limits at different strain rates

Strain rate, s−1 Yield limit (calculation), 
MPa

Yield limit (experiment), 
MPa

Source of experimental
data

1 164 165 This work
520 176 175 [26]
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Table 2. Calculated and experimental yield limits at different temperatures

Temperature, °C Yield limit 
(calculation), MPa

Yield limit (experiment 
[27]), MPa Relative error, %

25 164 165 0.6
100 153 160 4.4
200 117 135 13.3
300 72 60 16.7
elasticity. The constants for the bar materials were as follows:  kg/m3,  GPa is Young’s
modulus, and  is the Poisson coefficient.

5. BOUNDARY CONDITIONS

The geometry of the problem in axisymmetric formulation is depicted in Fig. 4. At the initial time
instance, the specimen-impactor tightly fit the bar-obstacle. For the entire volume of the specimen ,
the initial speed of collision  m/s measured in the experiment is known; in the radial

direction the speed is zero:  m/s, and the initial temperature is equal to room temperature:

°C. The bar has zero initial speed.

We prescribe the conditions at the boundaries:

−At  we prescribe the symmetry conditions  and . Here,  is the displace-
ment vector, ,  is the force vector, and  is the normal vector to the sur-
face.

−At  we do not allow displacements along the  axis:  and .

−At  we prescribe the free surface condition .

−At  we prescribe the condition of contact interaction: , where
 is the tangent vector to the surface and μ is the friction coefficient.

−At the entire boundary of the impactor, the adiabatic conditions are fulfilled: , where the

operator  defines the projection to the normal  and the dyad  is the projector.

The geometry of the calculation domain of the problem in the three-dimensional formulation is drawn
in Fig. 5.

The boundary conditions of the three-dimensional formulation are analogous to the axisymmetric
one, except for the conditions at the axis of symmetry:

−The initial conditions are m/s, m/s, m/s, °C.

−The boundary conditions are: , , , ,

, , , , and .
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Fig. 4. Geometry of calculation domain for axisymmetric problem.
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Fig. 5. Geometry of calculation domain for three-dimensional problem.
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Fig. 6. (a) Von Mises stress and (b) radial displacements at face end of impactor over time. 
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6. RESULTS OF NUMERICAL MODELING
Problem (1)−(11) in combination with the boundary conditions was solved numerically using the finite

element method. The constitutive relations were implemented in the VUMAT procedure in the incremen-
tal form by means of the explicit integration scheme with automatic selection of the time step included in
the Abaqus\Explicit solver and showed its efficiency in dynamic problems. The area of numerical integra-
tion was covered by the uniform mesh with a characteristic spatial approximation size of 0.25 mm (for the
impactor) and 5 mm (for the bar) in the three-dimensional formulation and 0.1 mm (for the impactor)
and 10 mm (for the bar) in the axisymmetric formulation. In the three-dimensional case we used the hex-
agonal elements, and in the axisymmetric case we used the quadrilateral finite elements. The time inte-
gration step has an order of 10−8 s.

The time period for computations was 200 μs. We established that this interval is sufficient to bring the
specimen and the bar to the state of relative equilibrium. We see in Fig. 6 that the radial displacements at
the face end of the impactor reach the stationary values at the mentioned time instance, and the stresses
become small, not capable of further significant deformations. After that, in comparison with the experi-
mental data, the calculation results are presented at the end of tests at a time instance of 200 μs.

The radial displacements obtained in the calculations and in the experiment are presented in Fig. 7.
Their comparison shows good qualitative and quantitative agreement. The maximum relative error was
7%.

Figure 8 contains the temperature distribution over the bar surface measured in the experiment and
obtained in the calculations. Disagreement of the values at the face end may be associated with several rea-
sons. Firstly, the spatial resolution of the infrared camera is far less than the spatial discretization in the
numerical model. Therefore, it is not excluded that temperature peak was not caught. Secondly, the cam-
era could not record the temperature at the face end because of technical difficulties in contact interaction
between cylinders of unequal diameter (the impactor and the bar): due to imaging at a distance at a certain
angle, the face end of the bar may be intercepted by the impactor face end. Hence, the values at the face
end are not taken into account in computing the error. The error could also be caused by disallowing the
thermoelastic effect in Eq. (11); however, it makes a negligible contribution. The largest error is observed
at a distance of 8−20 mm from the face end (Fig. 8). At the same distance the calculation provides the
underestimated displacement value (Fig. 7); consequently, the strains are also underestimated which leads
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS  Vol. 62  No. 7  2021
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Fig. 7. Radial displacements after collision along impactor.
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Fig. 8. Temperature at impactor surface after collision over its length. 
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to an underestimated temperature value obtained from Eq. (11). The relative error in computing the tem-
perature was 11%.

In the course of collision, different strain rates are realized in different regions of the impactor. For
instance, at the beginning of the impact, near the face end they reach values from 2 × 104 to 105 s−1

(Fig. 9), which is substantially higher than the strain rates at which the model parameters were identified
(520 s−1). Nevertheless, the final shape of the impactor is described with high accuracy. This indicates that
the proposed model has not only descriptive, but also the predictive capabilities. In addition, we observe
the characteristic conical configuration (the results in Fig. 9 are presented for the axisymmetric problem),
which is typical at loading cylindrical specimens both in quasi-static and in dynamic experiments. The dif-
ference from the standard compression tests of cylinders, in which the distribution has the form of a dou-
ble cone with an intersection at the center of the specimen, consists in the fact that in the Taylor test the
inelastic deformation begins to develop from the side of impact (from the left face end of the specimen,
see Fig. 9); therefore, the apex of the cone is situated also at the specimen face end.

In Fig. 10, we present the calculation results without accounting for the strain rate sensitivity
(at ). We see that in this case the calculation quantitatively does not agree with the experi-
ment (the relative error is 15%). The results agree only on the segment from 30 to 40 mm, where the strain
rates are low (close to 1 s−1). This confirms the necessity of accounting for the hardening by increasing the
strain rate and illustrates the capability of the proposed model to describe the hardening in a wide range
of strain rates.

We additionally analyzed the efficiency of parallelization of computations in solving the formulated
problem. In Fig. 11, we depict the graph of computation acceleration dependent on the number of pro-

ε == = 1pn n n
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Fig. 9. Distribution of strain rate (s−1) at time instance  μs.

100000
20000
18330
16670
15000
13330
11670
10000
8333
6667
5000
3333
1667
0

= 4t

Fig. 10. Radial displacements along impactor after collision with/without accounting for the strain rate sensitivity of the
material. 
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cessing cores. The capability of parallelization of computations is very important, especially when we deal
with the design and strength estimation of real structures. Such problems contain large integration regions
and their complex configuration sometimes requires detailed partitioning into finite elements, which leads
to immense time costs for the solution. With a low number of computation cores, we observe a linear
growth in the computation acceleration value, and then a reduction in the efficiency of parallelization.

7. CONCLUSIONS
In this work, we implemented dynamic experiments in the statement of the Taylor–Hopkinson test

with simultaneous recording of the surface temperature of the specimen, which we subsequently used for
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verifying the mathematical model of elastic-viscoplastic materials (metals and alloys) developed at the
Physical Foundations of Strength Laboratory, Institute of Continuous Media Mechanics, Ural Branch,
Russian Academy of Sciences. The constructed wide-range constitutive relations for a solid body with
defects take into account the accumulation of defects (microshears) and dissipation of energy by means
of inelastic deformation. The procedure for identifying the model parameters responsible for inelastic
deformation of the material was executed in several stages using the data of uniaxial quasi-static loading
(shortening of a cylindrical specimen) and of dynamic tests (of the Hopkinson–Kolsky bar).

The boundary value problem about the collision between a cylindrical specimen made of AMg6 and a
steel bar (in the formulation of the Taylor–Hopkinson test) was solved numerically by the finite element
method in the axisymmetric and three-dimensional statements. We obtained good agreement between the
results of numerical modeling and the experimental data; the error in the radial displacements was 7%,
and the error in the temperature, 11%. Thus, we may conclude that the mathematical model of the behav-
ior of a deformable solid body under quasi-static and dynamic loads is adequate and the developed con-
stitutive relations allow describing the deformation of materials in a wide range of strain rates including
accounting for damage accumulation (microshear) and energy dissipation.
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