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MAGNETIC FIELD GENERATION IN A CYLINDRICAL PLASMA

USING THE DENSITY GRADIENT

UDC 537.5M. Niroozada,∗ and B. Farokhia

Abstract: In this research, we use the fluid theory in an efficient way to perform a theoretical study
on a divergent flux of fast electrons produced during interaction of a high-power laser beam with a
cylindrical over-dense target. Cylindrical targets consisting of a low-density core with high-density
cladding structures are irradiated by an ultra-intense annular laser beam. The analytical model
exhibits such structures with a density gradient generating a strong spontaneous interface magnetic
field that can collimate the fast electron beam and prevent electrons from escaping. The magnetic
field generated by such a cylindrical target is compared with that of planar targets. The results
show that cylindrical structures have a more effective potential for producing spontaneous interface
magnetic fields and reducing the transverse angular distribution of the fast electron beam. Thus,
they will be adequate to increase the possibility of energy transmission to the main target for a more
promising fast ignition scheme in inertial confinement fusion.
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INTRODUCTION

High-energy electrons are produced and accelerated toward the target during interaction of a high-power
short laser pulse and a solid target [1–6]. One of the most significant applications of such laser-generated electron
beams is inertial confinement fusion [2, 3].

In the concept of fast ignition, a high-intensity (1024 W/m2) high-energy (105 J) short (10−11 s) laser pulse
irradiates pellets containing a deuterium-tritium (DT) mixture. This method is more effective than conventional
ignition [3]. Relativistic electrons can be produced in this approach at the edge of the pellets (usually 50 · 10−6 m
away from the dense core) through various mechanisms. These energetic electrons can propagate through a bulk
solid and transfer their energy to a dense core [2, 3]. When a fast electron beam (FEB) propagates through a dense
plasma, the beam current is neutralized by the electron return current of the background plasma generated by large
electric fields of fast electron beams [7].

One of the most significant mechanisms is produced by the return current Ohmic heating [5]. The effective
coupling of the short-pulse energy to the compressed core is critical in this scenario.

The transverse angular distribution of an FEB was studied in [8]. The possibility of collimating the relativistic
electron beam with a compressed core of the target is the main reason for successful ignition. Various methods and
targets with a variety of geometries and structures are applied to reduce the transverse angular distribution of the
FEB (in order to control its divergence). Some studies were performed in this field, namely, self-generated magnetic
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field at the resistivity boundary in a sandwich target [9], target with a high-resistivity core and low-resistivity
cladding [10], switchyard target [11], double cone target [12], imposed axial magnetic field [13], applying an external
magnetic field [14], target with a low-density core and high-density cladding with planner design [15], the use of
two consecutive laser pulses [16], etc. It is shown that all these methods allow FEB collimation.

Another approach is using cylindrical targets that have a density gradient. Cylindrical targets are essential,
more practical, and desirable options for experimental research [17, 18]. Djaoui [19] proposed an analytical model
for calculating the self-generated magnetic field at the cylindrical target structure (low-density core and high-density
cladding) for the first time. In the present study, we consider a cylindrical target and an annular laser beam and
compare the self-generated magnetic fields of planar and cylindrical targets.

1. ANALYTICAL MODEL

In this model, an annular high-intensity laser beam irradiates an un-magnetized target (the beam axis
coincides with the target axis). The target is assumed to be a plasma structure with a density gradient (low-density
core and high-density cladding). A homogeneous FEB is generated during the laser-plasma interaction. This
homogeneous FEB propagates through the target and generates electric fields, which will drive a return current.

Numerical and analytical simulations show that the target whose structure consists of a low-density core
and high-density cladding can generate a megagauss interface magnetic field, which collimates fast electrons [15,
20]. The self-generated magnetic field is calculated using a “rigid beam” approach (used for laser-driven electron
beam transportation in solid /plasma matter) [21, 22]. The model implies that cylindrical beam has a fixed current
density and moves with an average velocity v0 along the z axis. The ions, in this paper, are assumed to be immobile,
and they form a charge-neutralizing background. As all we need is just a short time to produce and develop the
interface magnetic field, the focus is put on this early stage, where we neglect the collision term.

As the plasma density is higher than the FEB density (np > nb), the background plasma flow is non-
relativistic with a tiny thermal spread compared to the fast electron beam.

Assuming cold plasma electrons, however, the electron thermal effects are disregarded. This approach has
been widely applied to laser-plasma interaction studies [23]. Thus, the background electrons can be treated as a
single non-relativistic cold collisionless fluid.

The electron fluid equations, together with the Maxwell equations, comprise a complete system of equations
describing the system response to FEB propagation [24]. The continuity equation and electron fluid equation are
written as

∂n

∂t
+∇ · (nve) = 0; (1)

(∂pe

∂t
+ (ve · ∇)pe

)
= −e

(
E +

1
c

ve ×B
)
, (2)

where −e is the electron charge, ve is the flow velocity of the background electrons, E and B are the electric
and magnetic fields, pe = mγeve is the momentum of the background electrons, m is the electron rest mass, and
γe = 1/

√
(1− v2

e/c2) is the relativistic mass factor.
As we can see, the electron pressure and collisional terms in Eq. (2) are neglected (according to the expla-

nation given above).
Introducing the vector potential A and the scalar potential ϕ, which satisfy the Coulomb gauge ∇ ·A = 0,

we can rewrite Eq. (2) as
∂

∂t

(
pe −

e

c
A

)
− ve ×∇×

(
pe −

e

c
A

)
= −∇

(
γe

ve · ve

2

)
+ e∇ϕ. (3)

We introduce the vorticity Ω defined as

Ω = ∇×
(
pe −

eA

c

)
.

Multiplying Eq. (3) by ∇×, we obtain the generalized vorticity conservation law [24]
∂Ω
∂t
−∇× (ve ×Ω) = 0 =⇒ ∂Ω

∂t
+ (ve · ∇)Ω = −Ω(∇ · ve) + (Ω · ∇)ve.
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If B and ∇× pe are equal to zero before FEB arrival, the vector Ω is also equal to zero; therefore, we have

B =
c

e
∇× pe.

In this case, the electron flow velocity is non-relativistic. Therefore, the relativistic effects are negligible, and

Bθ(r) = − c

e

∂pez
(r)

∂r
. (4)

The Maxwell equation for the self-generated electric and magnetic fields has the form

∇×B =
4π

c

(
− en

mγe
pe + J0

)
+

1
c

∂E

∂t
. (5)

For long beams (lb � v0/ωpe), the displacement current c−1 ∂E/∂t is of the order of (v0/(ωplb))2 � 1.
Here v0 and ωp are the FEB and background plasma frequencies, respectively. Therefore, the displacement current
term at the left-hand side of Eq. (5) can be neglected [24]:

∇×B =
4π

c

(
− en

mγe
pe + J0

)
. (6)

Using Eqs. (4) and (6), we obtain the self-generated magnetic field for the collisionless case:

mc2

4πe2
∇×

(γe

n
∇×B

)
+ B =

mcγe

e2

( 1
n
∇× J0 −

1
n2
∇n× J0

)
. (7)

Equation (7) clearly shows that such a structure with a density gradient in the transverse direction to the
FEB flow velocity should produce strong magnetic fields at the interface of a low-density core and high-density
cladding, which collimate the FEB flow.

2. ANALYTICAL STUDY OF A MAGNETIC FIELD GENERATED
IN A CYLINDRICAL GEOMETRY FOR HOMOGENEOUS FAST ELECTRON BEAMS

In this section, the self-generated magnetic field is calculated for a cylindrical target at the interface of the
low-density core and high-density cladding. In this model, three layers are considered for the target structure, and
the core is regarded as annular with the inner r1 and outer r2 radii, radial distance from the annulus center r, and
characteristic width of the annular core r2−r1 (Fig. 1). The background plasma densities in three regions indicated
in Fig. 1 are ni1 for 0 < r < r1, ni2 r1 6 r 6 r2, and ni3 for r > r2.

It is assumed that the FEB densities in regions 1, 2, and 3 are n01, n02, n03, respectively. The quasi-neutrality
condition for each region is

nj = zjnij − n0j , j = 1, 2, 3,

where nj is the background thermal electron density, and zj is the charge state for the j-th region.

r2

r3

r1 z

1

2

Fig. 1. Target structure: (1) low-density core; (2) high-density cladding.
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Equations (4) and (6) yield

mc2

4πe2

(d2vez(r)
dr2

+
1
r

dvez(r)
dr

)
= nvez(r) + n0v0, (8)

which can be written as

δ2
1

(d2vez(r)
dr2

+
1
r

dvez(r)
dr

)
−

(
vez(r) +

v01n01

n1

)
= 0, 0 < r < r1,

δ2
2

(d2vez(r)
dr2

+
1
r

dvez(r)
dr

)
−

(
vez(r) +

v02n02

n2

)
= 0, r1 6 r 6 r2,

δ2
3

(d2vez(r)
dr2

+
1
r

dvez(r)
dr

)
−

(
vez(r) +

v03n03

n3

)
= 0, r > r2,

where δj = c/ωpj is the collisionless electron skin depth, and ωpj =
√

4πnje2/m (j = 1, 2, 3) is the electron plasma
frequency for the background plasma in the j-th region.

These equations are called the modified Bessel equations, and their solutions have the form

vez(r) =


c1I0(r/δ1)− v01n01/n1, 0 < r < r1

c2I0(r/δ2) + c3K0(r/δ2)− v02n02/n2, r1 6 r 6 r2,

c4K0(r/δ3)− v03n03/n3, r > r2,

(9)

where I0(r/δ2) and K0(r/δ2) are the modified Bessel functions of the zeroth order. The constants c1, c2, c3, and
c4 are determined from the boundary conditions:

C1 =
δ1

δ2

[
c2I1

(r1

δ2

)
− c3K1

(r1

δ2

)] /
I1

(r1

δ1

)
,

C2 =
{

C3

[
K0

(r1

δ2

)
+

δ1

δ2

I0(r1/δ1)
I1(r1/δ1)

K1

(r1

δ2

)]
− v02n02

n2
+

v01n01
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} / [δ1

δ2
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(r1

δ2

)
− I0

(r1

δ2

)]
,
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)
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δ2
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)
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−
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(r2
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)
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δ2

)
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(r1
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(r2
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)
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(r2
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−

−
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K0(r2/δ3)
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(r1

δ2

)]}
,

C4 = −δ3

δ2

[
c2I1

(r2

δ2

)
− c3K1

(r2

δ2

)] /
K1

(r2

δ3

)
.

The magnetic field can be obtained by substituting Eq. (9) into Eq. (4):

eBθ(r)
mc

=



−C1

δ1
I1

( r

δ1

)
, 0 < r < r1,

−c2

δ2
I1

( r

δ2

)
+

c3

δ2
K1

( r

δ2

)
, r1 6 r 6 r2,

c4

δ3
K1

( r

δ3

)
, r > r2,

(10)

where I1(r/δ2) and K1(r/δ2) are the modified Bessel functions of the first kind.
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Fig. 2. Radial distributions of the magnetic field: a) r1 = 2 · 10−6 m and r2 = 12 · 10−6 m;
(b) r1 = 4 · 10−6 m and r2 = 14 · 10−6 m; (c) r1 = 20 · 10−6 m and r2 = 30 · 10−6 m.

3. RESULTS AND DISCUSSION
The results reported and discussed below were obtained for the values of the constants taken from [15]:

v02 ∼ c, n01 = n03 ≈ 0, n02/n2 ≈ 3/10, n1 = n3 ≈ 36n2, and δ2 ≈ 0.7 · 10−6 m.
Figure 2 shows the radial distributions of the normalized self-generated magnetic fields for r1 = 2 · 10−6,

4 · 10−6, and 20 · 10−6 m. For all three cases, the thickness of the inner layer is assumed to be 10−5 m. These
cylindrical targets with the density gradient also provide a possibility of electric charge and electron beam current
neutralization everywhere except for the boundaries of different density regions over a characteristic transverse
distance ∆r = δj [25]. It is seen from Fig. 2 that the spontaneous magnetic field produced in these target structures
reaches its maximum value at the boundaries. These spontaneous interface magnetic fields tend to bend the fast
electrons toward the main core by means of generating the v0/B force when the electron beam approaches the
interface. The self-generated magnetic field penetrates into the inner region, which is greater than the characteristic
skin depth. The spontaneous magnetic field is normalized to

B0 =
meωp2c

e
,

whose value is as high as several tens of megagauss (because the order of the electron plasma frequency in the over-
dense plasma is large: ωp2 is of the order of 1014 s−1), which can be understood as the order of magnitude of the
self-generated magnetic field in such structures. According to the above-mentioned equations, the density jump at
the boundaries of different layers leads to abrupt and rapid changes in the flow velocity of the background electrons
in the transverse direction to the flow and to generation of a spontaneous interface magnetic field. A stronger
magnetic field is generated at the inner interface, due to the creation of a larger density gradient in structures
having a smaller internal radius. It is found that selecting an appropriate thickness for different regions leads to
production of strong spontaneous magnetic fields at the interfaces, which, in turn, leads to better preservation of
fast electrons in the inner layer to transfer energy more efficiently.

Though the self-generated magnetic field tends to collimate the fast electrons, it disperses the returned
background electrons and expels some of them from the low-density core region to retain charge neutralization.

In order to keep the current neutralized, the self-generated magnetic field accelerates the background electrons
to a higher velocity. Next, we performed a comparison between the resulting spontaneous interface magnetic field
for a cylindrical target and a target structure (planar target) considered in [15] to study the impact of geometry of
these kinds of targets.

In the first investigation, we assumed a situation where the widths of all three regions in the two target
structures were identical: v02 ∼ c, n01 = n03 ≈ 0, n02/n2 ≈ 3/10, n1 = n3 ≈ 36n2, δ2 ≈ 0.7 ·10−6 m, r1 = 2 ·10−6 m,
and r2 = 12× 10−6 m.
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Fig. 3. Radial distributions of the background electron flow velocity (a) and self-generated mag-
netic field (b) for r1 = 2 · 10−6 m and r2 = 12 · 10−6 m: the solid and dot-and-dashed curves show
the results for the cylindrical and planar target, respectively.
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Fig. 4. Radial distributions of the background electron flow velocity (a) and self-generated mag-
netic field (b) for r1 = 10−5 m and r2 = 25 · 10−6 m: the solid and dot-and-dashed curves show the
results for the cylindrical and planar target, respectively.

It is clear from Fig. 3a that neutralization of the electric current of the fast electron beam is more effective
in the cylindrical target as compared to the planar target if the thickness of the first layer is small. The background
electron flow velocity is normalized to the speed of light. The self-generated magnetic field is larger at the inner
interface of the cylindrical target than that in the planar target, which can lead to conservation of a higher fraction
of fast electrons in the main target (Fig. 3b). However, the magnetic field in the cylindrical target with a large
radius is approximately the same in both geometries.

The results presented in Fig. 4 were obtained for r1 = 10−5 m and r2 = 25 · 10−6 m. The other parameters
were the same as those in the previous case.

As is seen from Fig. 4, the greater the radius, the better the correspondence between the two geometries.
The self-generated magnetic fields are almost identical. In the ranges considered in the present study, the type of
geometry is insignificant. In small and compact dimensions, however, the type of geometry is quite conspicuous, and
cylindrical geometry is superior as compared to planar geometry. If B0 is large, minor differences in the diagrams
lead to production of self-generated magnetic fields of different orders.

Furthermore, in order to gain a better insight into the effect of the target geometry on collimating the fast
electron beam during the interactions, we tried to quantify the maximum spontaneous interface magnetic fields for
different geometries.

932



r.106, m

B/B0

_0.3

_0.4

0.3

0.4

0.2

0.1

_0.1

_0.2

0

0.5

0 1 2 3 4 5 6

Fig. 5. Radial distribution of the self-generated magnetic field in the cylindrical (solid curve) and
planar (dot-and-dashed curve) targets for r1 = 10−6 m and r2 = 5 · 10−6 m.

The expression for the self-generated magnetic field in the inner region for the planar target can be written
as follows [15]:

eB(r)
mc

= − 1
δ2

(
c5 er/δ2 −c6 e−r/δ2

)
. (11)

Here

C5 =
{

C6

[(
1 +

δ1

δ2

)
e−r1/δ2

]
− v02n02

n2
+

v01n01

n1

} / [(δ1

δ2
− 1

)
er1/δ2

]
,

C6 =
{[(δ1

δ2
− 1

)
er1/δ2

](v03n03

n3
− v02n02

n2

)
+

+
[(

1 +
δ3

δ2

)
er2/δ2

](
− v02n02

n2
+

v01n01

n1

)} /
{[(δ1

δ2
− 1

)
er1/δ2

][(δ3

δ2
− 1

)
e−r2/δ2

]
−

[(δ3

δ2
+ 1

)
er2/δ2

][(δ1

δ2
+ 1

)
e−r1/δ2

]}
.

According to Eqs. (10) and (11), the maximum spontaneous magnetic fields generated at the interfaces are
calculated by using the above-mentioned data. The results of Fig. 3 were obtained for the first interface radius
r = 2 · 10−6 m. For this value of r, we have Bp/B0 ≈ 0.33, Bc/B0 ≈ 0.41, B0 ≈ 200 MGs, and Bc − Bp ≈
16 MGs = 1600 T. The subscripts p and c are used to mark the self-generated magnetic fields in the planar and
cylindrical targets, respectively. For the first interface radius r = 10−5 m, we obtain Bp/B0 ≈ 0.33, Bc/B0 ≈ 0.37,
B0 ≈ 200 MGs, and Bc −Bp ≈ 8 MGs = 800 T.

For the above-considered values of the first interface radius, the magnetic induction is seen to be almost at
the same level. For r = 12 · 10−6 and 25 · 10−6 m, we have Bp/B0 ≈ Bc/B0 ≈ −0.36.

Figure 5 shows the radial distributions of the dimensionless self-generated magnetic field for the cylindrical
and planar targets for r1 = 10−6 m and r2 = 5 ·10−6 m. It is seen that the magnetic field is stronger at the interface
with a smaller radius in cylindrical targets. In this way, the magnetic field can better converge and preserve fast
electrons in the target core.

Eventually, if the value of r is very large, the magnetic field in the cylindrical target coincides with the
magnetic field in the planar target.

It is found that excitation of magnetic fields due to rapid changing in the flow velocity of background
electrons in the transverse direction to the flow velocity caused by the density jump in specially engineered targets
(exhibiting a low-density core and high-density cladding) can collimate fast electrons. The laser-generated incident
fast electrons enter with a wide distribution of angles and a vast variety of velocities. Some fast electrons with higher
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velocities may be affected by these improved collimating magnetic fields and accumulate a higher FEB density in
the target core.

Increasing the generation of interface magnetic fields, which depends on the target configuration, is valuable,
especially if utilizing an external strong magnetic field is expensive.

CONCLUSIONS

In this paper, a pioneering theoretical investigation of the plasma with a low-density core and high-density
cladding irradiated by an annular laser beam is proposed in cylindrical geometry. The analytical results indicate
that cylindrical targets with the density gradient nonparallel to the flow velocity of the fast electron beam change
the flow velocity of the background plasma electrons in the transverse direction to the FEB flow velocity. As a
result, a spontaneous interface magnetic field is produced, which guides and collimates fast electrons.

It is shown that the maximum spontaneous magnetic field appears at the interface, and the self-generated
magnetic field penetrates into the inner region over the characteristic skin depth.

The self-generated magnetic fields of cylindrical structures having three different radii were compared. The
results reveal that the magnitude of the self-generated magnetic field at the interface is large if the first layer thickness
is small. The self-generated magnetic fields of cylindrical and planar structures are compared to each other. As it
is observed, the smaller the target size, the more distinct the relative advantages of cylindrical structures. Thus,
they can be used for fast ignition.
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