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Abstract: Results are presented on local-in-time solvability of free boundary problems for a system
of ideal compressible magnetohydrodynamics. A free plasma-vacuum interface problem and a free
boundary problem with boundary conditions on a contact discontinuity are considered. An approach
is given for proving the local existence and uniqueness of smooth solutions of these problems with
and without surface tension.
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1. FORMULATION OF A FREE BOUNDARY PROBLEM

Equations of magnetohydrodynamics (MHD) are considered, which describe a flow of an inviscid compressible
ideally conducting fluid (in particular, plasma) in a magnetic field [1]:

∂tρ + div (ρv) = 0; (1)

∂t (ρv) + div (ρv ⊗ v −H ⊗H) +∇q = 0; (2)

∂tH −∇× (v ×H) = 0; (3)

∂t (ρe + |H|2/2) + div ((ρe + p)v + H × (v ×H)) = 0. (4)

Here ∂t = ∂/∂t; ∇ = (∂1, ∂2, ∂3); ∂i = ∂/∂xi; t is the time; x = (x1, x2, x3) are the spatial coordinates; ρ is the den-
sity; v = (v1, v2, v3) is the velocity; H = (H1,H2,H3) is the magnetic field strength; q = p + |H|2/2 is the total
pressure; p is the pressure; S is the entropy; E = E(ρ, S) is the internal energy; e = E + |v|2/2. With account
for the thermodynamic identity

ϑ dS = dE − (p/ρ2) dρ,

where ϑ is the absolute temperature, system (1)–(4) is a closed system of eight equations of conservation laws.
The vector of unknowns can be, for example, U = (q, v,H, S). In this case, the expression ρ = ρ(p, S) is considered
as an equation of the state of the medium. Moreover, system (1)–(4) is complemented by the divergence constraint

div H = 0 (5)
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of initial data U |t=0 = U0(x) (if the condition (5) is fulfilled at t = 0, then, as suggested by Eq. (3), it is also valid
at t > 0).

Equation (5) can be used to write system (1)–(4) in nonconservative form

ρp

ρ

(dq

dt
−H · dH

dt

)
+ div v = 0, ρ

dv

dt
− (H · ∇)H +∇q = 0,

dH

dt
− (H · ∇)v − ρp

ρ
H
(dq

dt
−H · dH

dt

)
= 0,

dS

dt
= 0.

These equations are a symmetric system of the form

A0(U) ∂tU +
3∑

j=1

Aj(U) ∂jU = 0, (6)

where ρp = ∂ρ/∂p; d/dt = ∂t + (v · ∇); Aα (α = 0.3 ) denotes the symmetric matrices. The hyperbolicity
condition A0 > 0 of the symmetric system (6) is satisfied under the following constraints having physical meaning:

ρ(p, S) > 0, ρp(p, S) > 0. (7)

The second of the above-mentioned constraints is a requirement that the square of the sound velocity
is positive: a2 = 1/ρp > 0.

First, the classical formulation [2] of the problem with a free plasma — vacuum boundary is considered.
Let Ω+(t) and Ω−(t) be the regions occupied by plasma and vacuum, respectively. The plasma flow in Ω+(t) is de-
scribed by the system of MHD equations (1)–(4), and the magnetic field strength H−(t,x) in vacuum satisfies
the system of equations of pre-Maxwellian dynamics

div H− = 0, ∇×H− = 0 in Ω−(t). (8)

In this case, the free boundary Γ(t) = {F (t,x) = 0} moves at a velocity equal to the velocity of plasma particles
on it:

dF

dt
= 0 on Γ(t). (9)

The rest of the boundary conditions imply that the total pressure has a zero jump, and the magnetic fields with
strengths H and H− at the boundary are parallel to it:

[q] = 0; (10)

H ·N = 0; (11)

H− ·N = 0 on Γ(t) (12)

(N = ∇F is the normal to Γ; [q] = q|Γ − |H−|Γ|2/2). In this case, one can show that Eq. (11) is bounded
by the initial data of the problem (see [3]).

The problem with the free plasma — vacuum boundary is used to simulate the magnetic confinement
of the plasma (see, e.g., [4]). In astrophysics, this problem can simulate the motion of a star (for example, a solar
corona), in the case where it is necessary to account for the influence of magnetic fields.

Let the vacuum region Ω−(t) have an outer motionless boundary Γ− with a standard boundary condi-
tion on it:

H− · ν = 0 on Γ− (13)

(ν is the normal to Γ−). If the region Ω−(t) is simply connected, then the elliptic problem (8), (12), (13) has
a unique solution H− = 0. This paper touches upon the local-in-time well-posedness of the problem, rather than
the stability of a flow with a free boundary, so the geometry of the regions is not essential and we can assume
that Γ(t) = {x1 = ϕ(t,x′)}, where x′ = (x2, x3). Then, for a simply connected vacuum region, the free boundary
problem under consideration is reduced to a problem for the system of MHD equations (1)–(4) in the region
Ω(t) = Ω+(t) = {x1 > ϕ(t,x′)} with boundary conditions

q = 0, ∂tϕ = v ·N on Γ(t). (14)
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As noted above, the condition (11) is a constraint on the initial data, so it is not included in Eq. (14).
Moreover, the first condition in Eq. (14) implies that p|Γ = 0. In the case of a gas (for example, polytropic gas),
this equality means that ρ|Γ = 0. In other words, if it is required that the hyperbolicity conditions (7) should be
satisfied in the entire region up to the boundary, then it is assumed that, as in [5, 6], the case of a compressible
fluid is considered, for which ρ|Γ > 0.

However, even in the case of the simply connected region Ω−(t), the magnetic field in vacuum is not identically
zero if the plasma — vacuum system is not isolated from the environment because the surface current J is set on
boundary Γ− (see [4]). In this case, the boundary condition (13) in the above-given elliptic problem for H−

is replaced by the condition

(ν ×H−)
∣∣∣
Γ−

= J on Γ−. (15)

For Γ(t) = {x1 = ϕ(t, x′)}, the boundary conditions (9), (10), and (12) take the form

[q] = 0, ∂tϕ = v ·N , H− ·N = 0 on Γ(t), (16)

where N = (1,−∂2ϕ,−∂3ϕ).
If the surface tension is taken into account, the boundary conditions (14) and (16) are respectively replaced

by the conditions

q = sH(ϕ), ∂tϕ = v ·N on Γ(t); (17)

[q] = sH(ϕ), ∂tϕ = v ·N , H− ·N = 0 on Γ(t), (18)

where

H(ϕ) = ∇′ ·
( ∇′ϕ√

1 + |∇′ϕ|2
)
,

∇′ = (∂2, ∂3); s > 0 is the surface tension coefficient. It should be noted that it is necessary to account for the effect
of surface tension in simulating MHD flows of liquid metals (see, e.g., [7, 8] and references therein). At the same
time, even when it comes to MHD simulation of large-scale phenomena, such as processes in astrophysical plasma
where the effect of surface tension (and diffusion) may be neglected, the surface tension should be taken into account
as a stabilizing parameter in the numerical simulation of the Rayleigh — Taylor magnetic instability [9, 10].

We consider flows with a strong discontinuity surface Γ(t) = {x1 = ϕ(t, x′)}, on both sides of which (in
the regions Ω±(t) = {±(x1 − ϕ(t, x′)) > 0}), the vectors U± are smooth solutions of system (1)–(4). In an ideal
compressible MHD fluid, there are two types of strong discontinuities, the mass flow through which is equal to zero
(∂tϕ = (v± · N)|Γ): tangential and contact discontinuities [1, 11]. From a mathematical point of view, these
discontinuities are free characteristic surfaces for the hyperbolic system (6).

In [12], a sufficient condition was found for the well-posedness of the tangential discontinuity problem, whose
local-in-time solvability in Sobolev spaces was proven in [13] with satisfaction of that condition at the initial time.
This paper deals with contact discontinuities. Unlike the tangential discontinuity at each point of the contact
discontinuity surface Γ(t), the magnetic field is not parallel to it: (H± · N)|Γ 6= 0. From the general relations
on the strong discontinuity studied in MHD [1, 11], the following boundary conditions on the contact discontinuity
are derived:

[p] = 0, [v] = 0, [H] = 0, ∂tϕ = v+ ·N on Γ(t). (19)

Here [ · ] denotes the variation in the values on the discontinuity. In other words, at a contact MHD discontinuity,
the pressure, the velocity, and the magnetic field are continuous. At the same time, density, entropy, and temperature
can have an arbitrary jump: [ρ] 6= 0, [S] 6= 0, and [ϑ] 6= 0. The boundary conditions for contact discontinuities are
typical for simulating the processes occurring in space plasma. The contact discontinuities are observed, for example,
behind the shock waves that limit supernova remnants.

If the effect of surface tension is taken into account, the boundary conditions (19) are replaced by the con-
ditions [14–16]

[p] = sH(ϕ), [v] = 0, [H] = 0, ∂tϕ = v+ ·N on Γ(t). (20)

At the same time, it is actually assumed that the regions Ω+(t) and Ω−(t) are filled by two nonviscous compressible
ideally conductive liquids.
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2. LOCAL SOLVABILITY OF PROBLEMS
WITH NO ACCOUNT FOR SURFACE TENSION

Free plasma — vacuum boundary problems were actively studied in the 1950s and 1970s. However, the main
theoretical studies were devoted to searching for criteria for the stability of equilibrium states [2]. The mathematical
study of the local-in-time solvability of these problems was begun in [3], in which two alternative conditions for the
well-posedness of the free boundary problem (1)—(4), (8), (15), (16) were proposed: the condition of noncollinearity
of magnetic fields at each point of the free boundary∣∣∣H ×H−

∣∣∣
Γ
≥ δ0 > 0 (21)

and the generalized Rayleigh — Taylor condition for the jump of the normal derivative of the total pressure[ ∂q

∂N

]
≤ −δ1 < 0, (22)

where N = −N is the outer normal to Γ; δ0 and δ1 are the fixed constants. Note that the Rayleigh — Taylor
condition in classical hydrodynamics (for H ≡ 0 and H− ≡ 0) is the only condition for well-posedness of the corre-
sponding free boundary problem (see [5, 6, 17–21] and references therein). Condition (21) means that the magnetic
field can perform a stabilizing function.

In [22], based on an example of an ill-posed linearized problem with frozen coefficients, it is shown similar to an
example of Hadamard that the simultaneous violation of both conditions (21) and (22) causes the Rayleigh — Taylor
instability. Note that the proof of the ill-posedness of the original nonlinear problem is difficult (see [20, 21, 23], where
problems in the absence of a magnetic field are considered). In [22], a natural conjecture is formulated according to
which problem (1)–(4), (8), (15), (16) is locally well-posed if and only if condition (21) or condition (22) at each point
of the initial boundary is satisfied. This hypothesis has not yet been proven. Moreover, even if the well-posedness of
the problem with fulfillment of the Rayleigh — Taylor condition (22) at each point of the initial boundary is proven,
there are certain difficulties that have not yet been resolved (see [22]). At the same time, the local solvability of
the problem is shown in [24] under the noncollinearity condition (21) on an initial free boundary. Note that the
noncollinearity condition was taken in [3] as a requirement of solvability of the boundary conditions (11) and (12)
(for F = x1 − ϕ) for ∇′ϕ. As for the simpler free boundary problem (1)–(4), (14) with a zero magnetic field in
vacuum, its local solvability is proven in [25] under the Rayleigh — Taylor condition (22) for H− ≡ 0.

A brief scheme for proving the local-in-time existence and uniqueness of smooth solutions to the free boundary
problems [24, 25] (the same scheme was used in [6] in the case of a free boundary problem for the Euler equations
of a compressible fluid) is given below.

1. “Straightening” of the free boundary, i.e., reduction of the original problem to an initial boundary-value
problem in a fixed region (in this case, the problem continues to be considered in Euler coordinates).

2. Derivation of the basic a priori estimate for the solutions of the linearized problem (it usually implies
the uniqueness of the solution to the original nonlinear problem) under certain and often previously unknown
well-posedness conditions imposed on an unperturbed flow.

3. Proof of the existence of solutions to the linearized problem under the revealed well-posedness conditions.
4. Derivation of so-called tame estimates of solutions to the linearized problem, which are necessary to prove

the convergence of Nash — Moser iterations [26].
5. Proof of the existence of solutions to the nonlinear problem using the Nash — Moser iterations.
The need to use the Nash — Moser method is due to the fact that, at least within the framework of the ap-

proach used, it is impossible to derive a priori estimates for the solutions of the linearized problem for the free
boundary problems under consideration without losing derivatives of the source terms and coefficients. Therefore,
it is impossible to apply the contraction mapping principle, i.e., to prove the existence of solutions to a nonlinear
problem using Picard iterations.

The free boundary can be “straightened” in the simplest way, i.e., via the change of variables x̃1 = x1 −
ϕ(t,x′), which reduces the problem under consideration to an initial boundary-value problem in a half-space R3

+ =
{x̃1 > 0, x′ ∈ R2}. However, more complex substitutions were used in [24, 25]. For example, in the above-given
replacement in [25], ϕ is preceded by a factor representing the infinitely smooth cutoff function χ(x1). This makes
it possible to avoid making an assumption about the finiteness of the initial data in the direction normal to the free
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boundary. It is assumed below that χ ≡ 1. Then, following the change of variables and dropping tildes, system (6)
is reduced to the equations

L(U , ϕ) = 0 in ΩT , (23)

where

ΩT = [0, T ]× R3
+, L(U , ϕ) = L(U , ϕ)U,

L(U , ϕ) := A0(U) ∂t + Ã1(U , ϕ) ∂1 + A2(U) ∂2 + A3(U) ∂3,

Ã1 is the boundary matrix:

Ã1(U , ϕ) := A1(U)−A0(U) ∂tϕ−A2(U) ∂2ϕ−A3(U) ∂3ϕ.

It should be noted that, due to the second boundary conditions, det Ã1|x1=0 = 0 in Eqs. (14) and (16), that is, the
boundary is characteristic. The same change of variables is performed in system (8), and the boundary conditions
remain the same, but are formulated at the boundary ΣT = [0, T ]× {x1 = 0} × R2.

As the Nash — Moser method is used below, it is necessary to linearize the problem about some given basic
state, i.e., to consider the first variation of a nonlinear operator. Problem (1)–(4), (14) is considered. It is assumed
that the basic state (Û(t, x), ϕ̂(t, x′)) is a sufficiently smooth bounded vector function satisfying the hyperbolicity
conditions (7) and the second boundary condition in Eq. (14). The linearized system (23) has the form

d

dε
L(Û + ε U , ϕ̂ + ε ϕ)

∣∣∣
ε=0

= L(Û , ϕ̂)U + C(Û , ϕ̂)U − {L(Û , ϕ̂)ϕ} ∂1Û = f,

where U and ϕ denotes perturbations, C is the matrix, and f = f(t,x) is the artificially introduced source right-
hand side whose inclusion is necessary for using linearization to prove the existence of solutions to the original
nonlinear problem.

The term {L(Û , ϕ̂)ϕ} ∂1Û in the linearized system contains the derivatives of the function ϕ, which is
undesirable as it is easier to study the linear system only for perturbation U . This difficulty is overcome by using
Alignac’s unknown [27] of the form

U̇ := U − ϕ ∂1Û . (24)

As a result of this shift of the unknown vector, the linearized equations take the form

L(Û , ϕ̂)U̇ + C(Û , ϕ̂)U̇ − ϕ ∂1{L(Û , ϕ̂)} = f. (25)

The last term on the left-hand side of system (25) is equal to zero if the basic state (Û , ϕ̂) is a solution to the
original nonlinear system (23). Then, if we eliminate this term and further considering the linear equations

L(Û , ϕ̂)U̇ + C(Û , ϕ̂)U̇ = f in ΩT , (26)

it can be expected that the eliminated term, which should be considered as an additional error of the Nash — Moser
iterations in the analysis of the nonlinear problem, tends to zero as the iteration index tends to infinity.

Similarly, the boundary conditions (14) are linearized and the result is written using the unknown vector (24).
Thus, we obtain a linear problem for system (26) with boundary conditions(

v̇N − ∂tϕ− v̂2 ∂2ϕ− v̂3 ∂3ϕ + (∂1v̂N )ϕ

q̇ + (∂1q̂)ϕ

)
= g on ΣT , (27)

where v̇N = v̇ · N̂ ; v̂N = v̂ · N̂ ; N̂ = (1,−∂2ϕ̂,−∂3ϕ̂); g = g(t, x′) is the artificially introduced right-hand
side. The sign of the factor ∂1q̂ in (27) significantly affects the well-posedness of the problem (in “straightened”
variables, the Rayleigh — Taylor condition ∂q/∂N < 0, written on the basic state, takes the form ∂1q̂ > 0). It
is the Rayleigh — Taylor condition ∂1q̂ > 0 that allows one to estimate norm ϕ in space L2 and obtain the basic
a priori estimate for perturbations (U , ϕ) in space L2 (see [25]):

‖U‖L2(ΩT ) + ‖ϕ‖L2(ΣT ) ≤ C{‖f‖L2(ΩT ) + ‖g‖H1(ΣT )}. (28)

Here, initial data for (U , ϕ) are chosen to be equal to zero, and the case of nonzero initial data is investigated
in the nonlinear analysis (construction of a so-called approximation solution [6, 25]). Thus, one derivative of the
right-hand side g is lost in the estimate (28).
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The existence of solutions to the linearized problem (26), (27) is proven in [25] using the standard dual-
ity argument based on the application of an estimate in L2 (of the form (28) for g = 0) for the original linear
problem and a similar estimates in L2 for the coupled problem (see, e.g., [28]). However, similar reasoning is not
applicable in the case of the linearization of problem (1)–(4), (8), (15), (16) as it was in [29] possible to “close”
the estimate only in space H1 (more precisely, in the weighted anisotropic Sobolev space H1

∗ (see [13] and references
therein). This difficulty is overcome in [29] using some “hyperbolic” regularization of the problem proposed in [30],
the secondary symmetrization of Maxwell’s equations in vacuum, and also using the limit with respect to a small
regularization parameter (Maxwell’s equations for H− and the artificially introduced electric field E are considered
as the regularization of an elliptic system for H− [29]).

The existence of solutions to the original nonlinear problems was proven in [24, 25] using the Nash — Moser
iterations. The Nash — Moser method is described in detail in [26], and the related papers are given therein.
The idea of this method is to solve the nonlinear equation F(u) = 0 using the iterative scheme

F ′(Sθnun)(un+1 − un) = −F(un),

where F ′ is the linearization (first variation) of functional F ; Sθn
is a sequence of smoothing operators with

property Sθn
→ I as n → ∞. This scheme is the classical Newton scheme if Sθn

= I. The use of a smoothing
operator at each step of the Nash — Moser scheme allows one to compensate for the loss of derivatives not only
from the right-hand sides (as in the estimate (28)), but also from the linearization coefficients (in this case, from
the basic state (Û , ϕ̂)).

The errors of the classical Nash — Moser scheme are the quadratic error of the Newton scheme and the “sub-
stitution” error caused by the use of smoothing operators Sθn

. For problems (1)–(4), (14) and (1)–(4), (8), (15), (16),
the Nash — Moser method is not very standard as it is necessary to account for an additional error arising upon
the introduction of an intermediate (modified) state un+1/2, satisfying some nonlinear constraints. The main such
constraint is the requirement that the second boundary conditions in Eqs. (14) and (16) should be satisfied (as it
is assumed that ∂tϕ̂− v̂N |x1=0 = 0). The presence of another additional error is caused by eliminating the last term
on the left-hand side of system (25).

Basic a priori estimates of the form (28) are insufficient to prove the convergence of the Nash — Moser
iterations. It is required to derive some more delicate a priori estimates for the linearized problem in the higher
norms of the Sobolev spaces Hs, which take into account the number of “lost” derivatives not only of the right-
hand sides, but also of the coefficients, i.e., of (Û , ϕ̂). The main properties of such estimates known as called tame
estimates are linearity with respect to the higher norms and a fixed loss of derivatives, i.e., the number of “lost”
derivatives should be the same for any superscript s of space Hs.

As for the general scheme for proving the local-in-time well-posedness of problem (1)–(4), (19) for a contact
MHD discontinuity [32], it is the same as in [24, 25]. However, there are difficulties which were overcome in [31] in
order to obtain a basic a priori estimate for the linearized problem in H1. In [31, 32], a two-dimensional flow with
a contact discontinuity was considered, and the local solvability of this problem in a three-dimensional case was
not proven. Another difficulty arose in proving the existence of solutions to the linearized problem as it was not
possible to obtain an a priori estimate for it in L2. That difficulty was overcome in [31] by the “strictly dissipative”
regularization of the problem, proving the existence of solutions to the regularized problem in space L2 and passing
to the limit with respect in terms of the small regularization parameter using an estimate that is uniform with
respect to this parameter in H1.

It should be noted that it is not the magnetohydrodynamic Rayleigh — Taylor condition (22) that naturally
arises in the mathematical analysis of problem (1)–(4), (19), but rather its classical hydrodynamic version

[ ∂p

∂N

]
≤ −δ1 < 0 (29)

for pressure p (and not for the total pressure q). Condition (29) is the main requirement in [32] for the initial data,
which guarantees the local-in-time existence of a contact MHD discontinuity in the two-dimensional case.
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3. LOCAL SOLVABILITY OF PROBLEMS
WITH ACCOUNT FOR SURFACE TENSION

We consider the problem of proving the local solvability of free boundary problems with account for surface
tension, formulated in Sec. 1. Note that the existence and uniqueness theorems for these problems should be proven
using the scheme described in Sec. 2. The presence of term H(ϕ) in the boundary conditions makes it possible to
use estimates for the derivatives with respect to the spatial variables of the function ϕ when deriving basic a priori
estimates for the corresponding linearized problems. This, in turn, makes it possible in [16, 33] to obtain a priori
estimates for the linearization of problems (1)–(4), (17) and (1)–(4), (20) without imposing the corresponding
Rayleigh — Taylor conditions ((22) for H− ≡ 0 and (29)) for an unperturbed flow.

In the case of problems with account for surface tension, the main difficulty is proving the existence of
solutions to the corresponding linearized problems. This difficulty was overcome in [16, 33] by certain regularization
of these problems. We consider problem (1)–(4), (17). During the linearization of this problem in [33], it was possible
to close the estimate only in space H1

∗ (therefore, due to the absence of an estimate in L2, the duality argument
does not apply). System (26) is supplemented by a “strictly dissipative” term (0,−ε ∂1v̇N , 0, . . . , 0), which makes
it possible to estimate v̇N |x1=0 and a fourth-order “parabolic” term −ε(∂4

2 + ∂4
3)ϕ, where ε > 0 is a regularization

parameter (see [33]). It is clear that the second boundary condition in Eq. (27) contains an additional term due
to the linearization of H(ϕ). For such a regularized problem and for its coupled problem, one can derive estimates
in L2 and prove the existence of solutions using the duality argument for any fixed ε.

However, the a priori obtained estimate of the linearized problem in L2 is not uniform with respect to ε. In
order to pass to the limit ε → 0 and prove the existence of solutions to the original linear problem, an estimate
uniform in ε was derived in [33] in H1

∗ . Similar reasoning was carried out in [16] for a contact MHD discontinuity
with account for the surface tension.
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