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Abstract—One of the directions of using piezoelectric elements in modern technology is related to
their use for controlling the shape of a structure under the influence of operational loads. The issue of
a change in the shape (geometry) of a structure can be caused, for example, by the need for minimi-
zation of displacements in certain regions or, vice versa, for maximization of displacements to ensure
the stability of a structural shape under operational loads. Due to the presence of the inverse piezo-
electric effect in piezoelectric materials, this problem can be solved by applying a predetermined elec-
tric voltage to the electroded surfaces of piezoelectric elements. Elastic structures with elastic piezo-
electric elements attached to their surfaces become electroelastic. It is necessary to first assess the abil-
ities of piezoelectric elements to have an effect on deformations caused by external actions of different
types in order to use different strategies of control over their mechanical behavior. This means that
piezoelectric elements must provide a controlled form change depending not only on the characteris-
tics of the elements themselves (the size, physico-mechanical properties of the material, and position)
but also on the parameters of the structure (its geometry, size, boundary conditions, and physico-
mechanical characteristics) and acting loads. The influences of different factors on the deformation of
an electroelastic structure under the action of an electric voltage applied to the piezoelectric elements
in this work was established numerically based on mathematical modeling by solving the static prob-
lem of electroelasticity. The numerical implementation was carried out by the finite-element method
in the ANSYS software package. The possibilities for using piezoelectric elements for changing the
shape of a structure for different numbers of elements and different options of their layout on the sur-
face are demonstrated based on the example of a cantilevered fixed plate.
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1. INTRODUCTION
Creation of some elements of space vehicles, such as antennas and probes, automated manipulators,

and other high-technology products, requires the development of highly effective lightweight structures
due to strict requirements on weight. Light structures inherently possess low internal damping and higher
flexibility; they are susceptible to vibrations with a long decay time and are easily deformable under the
action of operation loads. Optimization of the mechanical behavior of such structures to ensure the best
operational characteristic requires appropriate control tools that can operate in an automatic mode. This,
in turn, gave rise to the idea of making structures of such a type that are capable of self-verification and
self-control.

The use of this idea in practice turned out to be possible due to the creation and use of smart technol-
ogies. The main feature of structures formed based on such technologies, or smart structures, is the
involvement of elements made of functional materials that can change their characteristics depending on
external conditions and thus change the characteristics of the initial object. One can consider shape mem-
ory alloys, piezoelectric materials, magnetic f luids, and some other materials as such materials. Elements
made of these materials can operate in a structure as sensors that register some of the parameters of a
structure or actuators that act on structural properties in a required way. Piezoelectric materials became
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MODELING THE DEFORMATION OF A PLATE 1239
most widely used in connection with their broad assortment and sufficiently wide range of physico-
mechanical characteristics (piezoceramics, piezopolymers, and other types). Piezoelectric materials are
distinguished by the ability to generate an electric field under deformation (the direct piezoeffect) and, on
the contrary, be deformed under the action of an electric field (the inverse piezoeffect). These properties
make them attractive for providing possibilities of control both for the shape of a structure and for oscil-
lations of any its part without a significant increase in its weight.

It is well known that elements made of piezoelectric materials and integrated with structures can act as
distributed sensors and actuators and are able to endow these structures with functions of self-checking
and self-control. The ability of self-checking in smart structures opens new possibilities of correcting the
shape and curvature of mirrors/antennas for high pointing accuracy or for maintaining desirable shapes
of f lexible aerospace structures, [1, 2], oscillation damping [3, 4], monitoring of structure states [5, 6],
identification of damages during operation, and so on. In Irschik’s survey [2], the corresponding appli-
cations of static and dynamic control for the shape of a structure by use of piezoelectric actuators were
described.

Some fundamental problems following from the problem of control for the shape of a structure are
common for the static and dynamic cases. Statistical control for the shape of f lexible products with the use
of piezoelectric actuators is of great importance for many applied areas, especially such as robotics, aero-
space and aircraft industry [7–9]. Under static control for the shape of electroelastic structures, the main
aim is to choose characteristics of the governing electric action for each piezoelectric actuator to make the
obtained structure maximally correspond to the required one.

The direct and inverse piezoeffects are not mutually reversible; therefore, to send to the actuator a sig-
nal that is necessary, e.g., for the recovery of the initial shape of a structure, it is required to transform the
signal from the sensor in a certain way. In connection with this, it is extremely important to understand
the operation mechanism of the inverse piezoeffect, i.e., the mechanical response of the piezoelectric ele-
ment to the applied electrical action.

One of the important problems that arise when using piezoactuators is their proper use that allow one
to minimize their weight-and-dimensional characteristics and to raise efficiency. These results can be
achieved owing to the optimum choice of their arrangement in the structure, geometry, quantity, and
parameters of the material.

The surveys of works devoted to the problem of optimizing the topology of structures with piezoelectric
elements were presented in [10–14]. However, the question of how to do it in the best way to control struc-
tural behavior still requires its solution for each specific construction with allowance for its final applica-
tion.

The magnitude of the generated electric signal is significantly affected by the arrangement of piezo-
electric elements both relative to the construction and relative to each other [15, 16]. The effect of bound-
ary conditions imposed on the structure during the control for its shape was studied in [17] based on the
example of a beam with one or two clumped ends.

As well, it is necessary to note the use of the prestress effect in structures. This can be important from
the viewpoint of creating conditions for the control for their shape under the action of operation loads.
However, researchers as a rule do not consider this possibility. Since the creation of prestress is a type of
activation of the intrinsic mechanical stress it can be used in the context of methods for controlling shape,
as mentioned in [18].

In recent years, researcher attention [1, 2, 18–21] has been focused on the optimal spatial distribution
of the controlling electrical action applied to elements made of a piezoelectric material to obtain effective
and accurate control over the shape of a structure.

As mentioned in [19], successful control of the shape of a structure requires determination of the fol-
lowing parameters: the actuator position corresponding to the desired goal, the required size of the piezo-
electric element, that is, the actuator, and the magnitude of the applied controlling electric voltage. The
optimum positions and lengths of piezoactuators that allow one to achieve the maximum or minimum
deflections of the beam were found. The authors demonstrated that an optimum electric voltage exists
that can be applied to actuators; it depends on their length and position. In that work, it was also demon-
strated that a single actuator is sufficient for simpler cases of loading, when the deflection curve is either
convex or concave for the entire beam. However, for more complicated cases of loading, in which a part
of the beam can be bent downward and a part of it is bent upward, a single actuator with application of
electric voltage on this bounded area ceases to be effective. Numerically, based on the example of a plate
with two actuators, it was shown that the maximum deflection can be decreased substantially by placing
the actuators optimally and applying oppositely directed electric fields. When comparing the results in
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cases of using a single actuator or double actuators of the same length, a reduction of 174% in the maxi-
mum deflection was observed.

The results of the investigation presented in [19] indicate that optimization of piezoelectric element
configurations from the viewpoint of the geometry and characteristics of the electric field is an effective
way to increase the performance of piezoactuators and must be a part of the development of adaptive
structures for technical applications with restrictions on weight.

It should be noted that the efforts of researchers in the consideration of beams [22] or plates [23, 24]
were directed as a rule at achieving their bending without regard to the possibility of obtaining a torsion
effect. Versions of nonstandard arrangements of the piezoelectric element (in particular, at an angle to the
axial line) were also not considered.

In this work, based on the example of a cantilevered fixed plate, we obtained results that demonstrate
the influence of different arrangements of piezoelectric elements, their number, and different polarization
electric voltages applied to them on structural deformation.

2. THE MATHEMATICAL STATEMENT OF THE PROBLEM
The geometric model of real objects in this work is a piecewise homogeneous body with a volume

. In this body, the volume  consists of N homogeneous electroelastic (piezoelec-

tric) elements; the volume , of M homogenous elastic elements. The total surface of the
piecewise homogeneous body S bounding the volume V can be represented as a sum

. The sum includes surface portions on which the following quantities are

specified: displacements  ( ), surface forces  ( ), charge density  ( ), electric potential  ( ),

and the part of the body surface not covered by electrodes (nonelectroded surface) .
Based on the principle of virtual displacements, Maxwell’s differential equations in the quasi-static

approximation, and the relations of linear elasticity theory, the variational equilibrium equation in the
case of quasi-static deformation of a piecewise homogeneous electroelastic body with a volume V under
the action of volumetric forces  and surface forces  [25–27] is formulated:

(1)

In Eq. (1), the following notation is used:  and  are components of the electric induction and electric
field strength vectors;  are components of the symmetric Cauchy stress tensor;  are components of
the linear strain tensor;  are components of the displacement vector; and  are the specific densities
of materials of the n-th and m-th components of the piecewise homogeneous body (materials of the vol-
umes  and , respectively);  and  are the parts of surfaces of the volumes  and  on which
the surface forces  are specified;  is the portion of the surface of the volume  on which the surface
charge density  is specified; and ϕ is the electric potential.

The relationship between the components of the displacement vector and strain tensor is described by
the Cauchy differential relations

(2)

For the electric field, the potentiality condition is satisfied:

(3)
The system of equations is closed by the physical relations for the electroelastic components:
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and for elastic components in the case of an isotropic material [28, 29],

(5)

or anisotropic material [28, 29],

(6)

Here,  and  are components of elastic constant tensors;  and  are the elastic shear and bulk

moduli; σ is the mean stress; θ is the volumetric strain; and  and  are components of tensors of piezo-
electric and dielectric coefficients.

The uniqueness of the solution is provided by the boundary conditions. When posing boundary value
problems of electroelasticity at each point of the surface bounding the body it is necessary to specify the
boundary conditions on the mechanical and electrical variables. Electric energy is delivered to a deformed
piezoelectric body and taken from it using electrode coatings deposited on areas of the surface of the body
(electroded surfaces). In what follows, we assume that electrode coatings are thin ideal conductors with a
negligibly low mass. Covering of a portion of the piezoelectric body surface with a conducting layer makes
it equipotential, i.e., the electric potential value is the same throughout the entire electroded surface.

The boundary conditions are stated in the following form:

(7)

(8)

(9)

The potential ϕ is determined up to an additive constant. For this reason, it is taken that a zero potential
is specified on a certain area of the electroded surface;  then has the meaning of the potential difference.

The posed problem was implemented numerically by the finite-element method using possibilities of
the ANSYS proprietary application program package [30].

According to the finite-element method, the equilibrium equation for an electroelastic body (1) can be
written in the following matrix form:

(10)

Here, the following notation is used:

The behavior of electroelastic components of the volume  and elastic components of the volume 
was modeled using 20-node solid finite elements in the form of tetrahedrons with quadratic approxima-
tion of nodal unknowns; in , the SOLID226 element; in , the SOLID186 element from the library of
the ANSYS package. Each node of the SOLID226 element contains four nodal unknowns, the displace-
ments  and the electric potential; each node of the SOLID186 element contains three nodal dis-
placements .
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Fig. 1. The computation schemes for different positions of the piezoelectric element on the plate surface at : (a) near
from the fixed edge and (b, c) at different distances from the free edge. 

(а) (b) (c)

z

xy

α = 0
Standard procedures of the finite-element method reduce problems described by Eq. (10) to systems
of linear algebraic equations (SLAEs). These systems can be represented for the problem about quasi-
static deformation in the matrix form as follows:

(11)
Using the presented mathematical statement, we obtained numerical results that demonstrate the pos-

sibility of control for the geometry of a structure by use of piezoelectric elements to electroded surfaces,
on which an electric potential is applied.

3. NUMERICAL RESULTS
An elastic isotropic rectangular cantilevered aluminum plate with dimensions of 500 × 60 mm was the

object of study. The mechanical characteristics of the plate material are  Pa; ; and
 kg/m3. The plate thickness was taken to be equal to 0.5 mm. Piezoelectric elements with dimen-

sions of 50 × 20 × 0.3 mm made of PZT-19 piezoceramics were attached to the plate surface. The upper
and the under surface of the piezoelectric elements were electroded and the polarization axis coincided
with the direction of the normal to the electroded surfaces. For the calculations, the material of the piezo-
electric elements was assumed to be elastic. Its physico-mechanical characteristics were as follows: the
elasticity moduli  N/m2,  N/m2,  N/m2,

 N/m2,  N/m2, and  N/m2; the piezoelectric coef-
ficients  C/m2,  C/m2, and  C/m2; the dielectric coefficients

 F/m, and  F/m; the density kg/m3; and the dielectric
permeability of vacuum  F/m. This material was chosen as most typical and most wide-
spread both in theoretical and applied investigations.

As an illustration of possibilities for the control for the geometry of a structure, the influence of the
arrangement of piezoelectric elements, their number, and electrical voltage applied to electroded surfaces
of the piezoelectric elements on plate displacements in the direction perpendicular to the plate surface 
was studied.

Let us estimate the effect of the rotation angle (α) of the piezoelectric element about the longitudinal
axis of symmetry of the plate on the value of displacements  of the free end of the plate for the following
positions of a single piezoelectric element: its center of mass is at a distance of 30 mm from the fixed end
of the plate (Fig. 1a); its center of mass is 70 (Fig. 1b) and 30 mm from the free end (Fig. 1c).

The lower electroded surface of the piezoelectric element is grounded (the electric potential on it has
a zero value); on the upper electroded surface the value of the electric potential is 200 V. The results are
presented in Table 1 and in Fig. 2.

Analyzing the distribution patterns of displacements  which are presented in Fig. 2, one can say that:
—arrangement of the piezoelectric element in the region of fixation allows one to use it most effectively

for changing the shape of the structure because such a position provides the maximum values of the dis-
placements of the free edge of the plate;

—the farther the piezoelectric element is from the fixation point, the stronger the observed effect of
torsion of the transverse cross section is when its orientation (angle of rotation) changes relative to the axes
of symmetry of the plate.
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Table 1. The maximum values  as functions of the angle of rotation of the piezoelectric element relative to the
rolling axis of symmetry of the plate in different positions

, deg

Position of the piezoelectric element

Fig. 1a Fig. 1b Fig. 1c

, mm

0 0.925 0.124 0.056

30 0.844 0.120 0.060

45 0.758 0.109 0.056

60 0.674 0.096 0.050

90 0.586 0.074 0.036

max
zU

α

max
zU
Therefore, these results make it possible to conclude that the transverse bending of the plate can be
controlled by a displacement of the piezoelectric element along the axis of symmetry of the plate and its
torsion can be formed using the angle of rotation (α) of the piezoelectric element with respect to the lon-
gitudinal axis of symmetry of the plate.

Further, we consider the possibility to control the geometry of a structure due to arrangement of several
piezoelectric elements. In this section, it is shown how the shape of the initial object can be changed
depending on the number of piezoelectric elements arranged on the surface of the object and different
combinations of controlling actions (an electric signal applied to the piezoelectric elements).

The first series of numerical experiments was carried out with two piezoelectric elements. The piezo-
electric elements were placed at equal distances from the plate edges parallel to each other and their long
sides were oriented along the longitudinal axis of symmetry of the plate. The centers of mass of both piezo-
electric elements were at a distance of 30 mm from the fixation. An electric signal V was
applied to both piezoelectric elements. Here,  and  are the potential differences applied to the first
and second piezoelectric element, respectively. In this process, pure bending was observed; however, the
bending magnitude  was 1.3 mm, which is larger than with the use of a single piezoelectric element by
a factor of 1.4.

In further calculations, the configuration of piezoelectric elements remained the same as in the previ-
ous series but the characteristics of the controlling electrical action were varied. For calculations of this
series, it was taken that signals applied to each of the piezoelectric elements have different polarities (a
positive electric potential was applied to one piezoelectric element and a negative one to the other).

Figure 3 shows the deformation patterns according to the following combinations of controlling signals
applied to the piezoelectric elements: the electric potential at the first piezoelectric element was constant
and equal to  V; an electric potential equal to –200 (Fig. 3a), –199 (Fig. 3b), –195 (Fig. 3c),
‒170 (Fig. 3d), and –150 V (Fig. 3e) was successively applied to the second piezoelectric element.

These results indicate that applying an electric signal with different polarity to both piezoelectrical ele-
ments when using two elements allows one to achieve different degrees on plate torsion. In this process,
depending on the relation between magnitudes of the signals, one can control both the torsion angle and
the position of the torsion axis.

In the case where the piezoelectric elements are displaced relative to the fixation but their positions rel-
ative to each other are preserved, torsion also appears in a certain local region in a neighborhood of the
piezoelectric element (Fig. 3f, parameters of the controlling signal were V and V).

In the next series of calculations, two piezoelectric elements were initially positioned parallel to each
other and the centers of mass were distant from the fixation area by 30 mm. One element remained in its
place and the second one was displaced along its longitudinal axis of symmetry parallel to the longitudinal

ϕ = ϕ = +1 2 200
ϕ1 ϕ2

zU

ϕ = +1 200

ϕ = +1 200 ϕ = −2 200
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Fig. 2. The distribution of the displacements  depending on the position of the center of mass of the piezoelectric ele-
ment at different values of the angle α, deg: (a) 0, (b) 45, and (c) 90. 

y x

z

(a)

(b)

(c)

y x

z

zU
axis of symmetry of the plate. For the controlling signal, an electric potential of different polarity but sim-
ilar in its modulus was applied to the piezoelectric elements: V and V.

Figure 4 presents the plate deformation patterns for three versions of the arrangement relative to fixa-
tion of the second piezoelectric element: its center of mass is spaced from the fixation by 80 (Fig. 4a),
130 (Fig. 4b), and 250 mm (Fig. 4c). The presented deformation patterns indicate that when the piezo-
electric elements are not parallel to each other and the electric signal applied to them has different polarity
but is similar in its modulus, the shape of the obtained deformed structure is more complicated; it is a
combination of bending and torsion.

This series of numerical experiments demonstrates that one can obtain more complicated shapes of the
deformed structure when using several piezoelectric elements via their different arrangements.

Let us consider this based on the example of the generation of shapes of the transverse bending of a
plate using three and five piezoelectric elements that are positioned one after another on the longitudinal
axis of the plate. Figure 5 presents the plate deformation patterns when controlling the shape with the use

ϕ = +1 200 ϕ = −2 200
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Fig. 3. The patterns of plate deformation corresponding to the following control signals applied to the piezoelectric ele-
ments: (a) V, V; (b) V, V; (c) V, V; (d) V,

V; (e) V, V, the centers of mass of the piezoelectric elements are displaced by 30 mm
from the fixation (a–e); and (f) V, V, the centers of mass of the piezoelectric elements are displaced
by 200 mm from the fixation. 

(а) (b)

(c) (d)

(e) (f)

y x

z

ϕ = +1 200 ϕ = −2 200 ϕ = +1 200 ϕ = −2 199 ϕ = +1 200 ϕ = −2 195 ϕ = +1 200
ϕ = −2 170 ϕ = +1 200 ϕ = −2 150

ϕ = +1 200 ϕ = −2 200
of three piezoelectric elements. The controlling signal was specified as follows:  V (ele-
ments 1 and 3) and  V (element 2). As a result, a local deflection in the middle of the plate was
obtained for this configuration.

When using five piezoelectric elements, the goal was to obtain two plates areas that were symmetric in
their displacements . As a result of the performed computational experiments, it was found that obtain-
ing the required shape required application of a controlling signal with the following characteristics:

 V,  V, and  V. As a result, the pattern of plate bending presented
in Fig. 6 was obtained.

ϕ = ϕ = +1 3 100
ϕ = −2 200

ZU

ϕ = ϕ = +1 5 100 ϕ = ϕ = −2 4 200 ϕ =3 200
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Fig. 4. The shapes of the deformed plate and the view in the (xz) plane for different versions of displacement of one of the
piezoelectric elements relative to the fixation, mm: (a) 80, (b) 130, and (c) 250. 

z x

y

(а)

(b)

(c)

Fig. 5. The patterns of structural deformation when modeling bending using three piezoelectric elements: (a) isometric
view and (b) view in the (xz) plane; (c) the scheme of applying the control action to the piezoelectric elements. 
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Fig. 6. The patterns of structural deformation when modeling bending using five piezoelectric elements: (a) isometric
view and (b) view in the (xz) plane; (c) the scheme of applying the control action to the piezoelectric elements. 
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4 5
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(c)
4. CONCLUSIONS
In this work, based on the example of a cantilevered fixed plate, the influence of piezoelectric elements

on its deformation in different arrangements relative to the main structure and to each other has been
demonstrated, as well as the influence of a varying electric potential applied to them. It has been shown
that bending, torsion, and a complex deformed state that is a combination of the bending with torsion can
occur depending on the combination of these factors.

These investigations can be useful both when using a form change to ensure the stability of the geom-
etry of an item under the action of different loads and when using active strategies for control of the
dynamic behavior of constructions by forming a prestress state leading to changes in the shape of oscilla-
tions of a structure at given modes.

FUNDING
This work was supported by the Russian Foundation for Basic Research, project no. 19-41-590007_r-a.

REFERENCES
1. Koconis, D.B., Kollar, L.P., and Springer, G.S., Shape control of composite plates and shells with embedded

actuators. II. Desired shape specified, J. Compos. Mater., 1994, vol. 28, pp. 262–285. 
https://doi.org/10.1177/002199839402800305

2. Irschik, H., A review on static and dynamic shape control of structures by piezoelectric actuation, Eng. Struct.,
2002, vol. 24, pp. 5–11. 
https://doi.org/10.1016/S0141-0296(01)00081-5

3. Lin, C.Y., Crawley, E.F., and Heeg, J., Open and closed loop results of a strain-actuated active aeroelastic wing,
J. Aircraft, 1996, vol. 33, pp. 987–994. 
https://doi.org/10.2514/3.47045

4. Zhang, S., Schmidt, R., and Qin, X., Active vibration control of piezoelectric bonded smart structures using
PID algorithm, Chin. J. Aeronaut., 2015, vol. 28, pp. 305–313. 
https://doi.org/10.1016/j.cja.2014.12.005

5. Ambrose, T.P., Houston, D.R., Fuhr, P.L., Devino, E.A., and Werner, M.P., Shoring systems for construction
load monitoring, Smart Mater. Struct., 1994, vol. 3, pp. 26–34. 
https://doi.org/10.1088/0964-1726/3/1/005

6. Soh, C.K., Tseng, K.K.H., Bhalla, S., and Gupta, A., Performance of smart piezoceramic transducers in health
monitoring of RC bridge, Smart Mater. Struct., 2000, vol. 9, pp. 533–542. 
https://doi.org/10.1088/0964-1726/9/4/317
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS  Vol. 61  No. 7  2020



1248 IURLOVA et al.
7. Chaudhry, Z. and Rogers, C.A., Bending and shape control of beams using SMA actuators, J. Intell. Mater. Syst.
Struct., 1991, vol. 2, pp. 581–602. 
https://doi.org/10.1177/1045389X9100200410

8. Suleman, A., Crawford, C., and Costa, A.P., Experimental aeroelastic response of piezoelectric and aileron
controlled 3D wing, J. Intell. Mater. Syst. Struct., 2002, vol. 13, pp. 75–83. 
https://doi.org/10.1177/104538902761402477

9. Mabe, J., Calkins, F., and Butler, G., Boeing’s variable geometry chevron, morphing aerostructure for jet noise
reduction, in Proceedings of the 47th AIAA/ASME /ASCE/AHS/ASC Structures, Structural Dynamics and Mate-
rials Conference, and 14th AIAA/ASME/AHS Adaptive Structures Conference, AIAA, 2006, No. 2006-2142. 
https://doi.org/10.2514/6.2006-2142

10. Sigmund, O. and Maute, K., Topology optimization approaches. A comparative review, Struct. Multidisc. Op-
tim., 2013, vol. 48, pp. 1031–1055. 
https://doi.org/10.1007/s00158-013-0978-6

11. Deaton, J.D. and Grandhi, R.V., A survey of structural and multidisciplinary continuum topology optimization:
Post 2000, Struct. Multidisc. Optim., 2014, vol. 49, pp. 1–38. 
https://doi.org/10.1007/s00158-013-0956-z

12. Remouchamps, A., Bruyneel, M., Fleury, C., and Grihon, S., Application of a bi-level scheme including topol-
ogy optimization to the design of an aircraft pylon, Struct. Multidisc. Optim., 2011, vol. 44, pp. 739–750. 
https://doi.org/10.1007/s00158-011-0682-3

13. Zhu, J.H., Zhang, W.H., and Xia, L., Topology optimization in aircraft and aerospace structures design, Arch.
Comput. Methods Eng., 2016, vol. 23, pp. 595–622. 
https://doi.org/10.1007/s11831-015-9151-2

14. Yurlova, N.A., Matveenko, V.P., Oshmarin, D.A., Sevodina, N.V., and Yurlov, M.A., in Proceedings of the
7th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMA'2016, Crete Is-
land, Greece, June 5–10, 2016, Vol. 1, pp. 1920–1929.

15. Crawley, E.F. and Louis, J., Use of piezoelectric actuators as elements of intelligent structures, AIAA J., 1987,
vol. 25, pp. 1373–1385. 
https://doi.org/10.2514/3.9792

16. Oshmarin, D.A., Iurlov, M.A., Sevodina, N.V., and Yurlova, N.A., On the optimal location of several peizo-
electric elements on the structure surface, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 581, p. 012013. 
https://doi.org/10.1088/1757-899X/581/1/012013

17. Foutsitzi, G.A., Gogos, C.G., Hadjigeorgiou, E.P., and Stavroulakis, G.E., Actuator location and voltages op-
timization for shape control of smart beams using genetic algorithms, Actuators, 2013, vol. 2, pp. 111–128. 
https://doi.org/10.3390/act2040111

18. Gaudenzi, P., Fantini, E., Koumousis, V.K., and Gantes, C.J., Genetic algorithm optimization for the active
control of a beam by means of PZT actuators, J. Intell. Mater. Syst. Struct., 1998, vol. 9, pp. 291–300. 
https://doi.org/10.1177/1045389X9800900407

19. Bruch, J.C., Jr., Sloss, J.M., Adali, S., and Sadek, I.S., Optimal piezo-actuator locations/lengths and applied
voltage for shape control of beams, Smart Mater. Struct., 2000, vol. 9, pp. 205–211. 
https://doi.org/10.1088/0964-1726/9/2/311

20. Nguyen, Q. and Tong, L., Shape control of smart composite plate with non-rectangular piezoelectric actuators,
Compos. Struct., 2004, vol. 66, pp. 207–214. 
https://doi.org/10.1016/j.compstruct.2004.04.039

21. Koconis, D.B., Kollar, L.P., and Springer, G.S., Shape control of composite plates and shells with embedded
actuators. II. Desired shape specified, J. Compos. Mater., 1994, vol. 28, pp. 262–285. 
https://doi.org/10.1177/002199839402800305

22. Barboni, R., Mannini, A., Fantini, E., and Gaudenzi, P., Optimal placement of PZT actuators for the control
of beam dynamics, Smart Mater. Struct., 2000, vol. 9, pp. 110–130. 
https://doi.org/10.1088/0964-1726/9/1/312

23. Ip, K.-H. and Tse, P.-C., Optimal configuration of a piezoelectric patch for vibration control of isotropic rect-
angular plates, Smart Mater. Struct., 2001, vol. 10, pp. 395–403. 
https://doi.org/10.1088/0964-1726/10/2/401

24. Sun, D. and Tong, L., Modal control of smart shells by optimizing discretely distributed piezoelectric transduc-
ers, Int. J. Solid. Struct., 2001, vol. 38, pp. 3281–3299. 
https://doi.org/10.1016/S0020-7683(00)00224-9

25. Parton, V.Z. and Kudryavtsev, B.A., Elektromagnitouprugost’ p’ezoelektricheskikh i elektroprovodnykh tel (Elec-
tromagnetoelasticity of Piezoelectric and Electrically Conductive Bodies), Moscow: Nauka, 1988.
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS  Vol. 61  No. 7  2020



MODELING THE DEFORMATION OF A PLATE 1249
26. Karnaukhov, V.G. and Kirichok, I.F., Elektrotermovyazkouprugost’ (Electrothermoviscoelasticity), Kiev: Nauk.
Dumka, 1988.

27. Shul’ga N.A. and Bolkisev A.M., Kolebaniya p’yezoelektricheskikh tel (Oscillations of Piezoelectric Bod-
ies), Kiev: Naukova Dumka, 1990.

28. Lekhnitskiy, S.G., Teoriya uprugosti anizotropnogo tela (Theory of Elasticity of an Anisotropic Body), Moscow:
Nauka, 1977.

29. Lurie, A.I., Theory of Elasticity, Berlin: Springer, 2005.
https://doi.org/10.1007/978-3-540-26455-2 

30. Iurlova, N.A., Sevodina, N.V., Oshmarin, D.A., and Iurlov, M.A., Algorithm for solving problems related to the
natural vibrations of electro-viscoelastic structures with shunt circuits using ANSYS data, Int. J. Smart Nano
Mater., 2019, vol. 10, pp. 156–176. 
https://doi.org/10.1080/19475411.2018.1542356

Translated by A. Nikol’skii
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS  Vol. 61  No. 7  2020


	1. INTRODUCTION
	2. THE MATHEMATICAL STATEMENT OF THE PROBLEM
	3. NUMERICAL RESULTS
	4. CONCLUSIONS
	REFERENCES

		2021-02-17T12:25:08+0300
	Preflight Ticket Signature




