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Abstract—The surfactant diffusion through the vertical interface in a system of two immiscible liquids
filling a horizontal channel has been studied in a two-dimensional formulation. The densities of the
base liquids were initially set equal to the surfactant density. Therefore, all the subsequent density vari-
ations in the system are determined only by the contraction effect. Under nonunifrom diffusion the
interfacial tension is a function of the local surfactant concentration, which gives rise to Marangoni
convection. Since there are uncontrolled surface-active impurities in the system, the capillary motion
is initiated in a threshold manner. It is shown that at the initial stage, despite the presence of gravity,
the Marangoni convection is in the form of a series of periodically emerging paired vortices located
symmetrically relative to the channel axis (as in weightlessness conditions). As the vertical density dif-
ference in the channel increases, the number of vortex pairs is reduced to one. A full-scale experiment,
during which the structure of the f lows and surfactant concentration fields near the interface was visu-
alized, has been performed to verify the results of numerical simulations. The dynamics of the oscilla-
tory mode of convection has been studied. The results of the numerical and full-scale experiments
have been shown to be in qualitative agreement. The pattern of the surfactant concentration fields and
stream functions in the channel as well as the time dependence of the maximum value of the stream
function are presented for several values of the Marangoni and Grashof numbers. It has been found
that at sufficiently large Marangoni numbers (Ma ≥ 50 000) the diffusion process gives rise to instabil-
ity in the system of immiscible liquids and a soluble surfactant, provided that their densities are equal,
even in the absence of contraction.

Keywords: surfactant, interface, diffusion, weightlessness simulations, contraction, Marangoni con-
vection, oscillatory mode.
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1. INTRODUCTION
The main problem of laboratory simulations of hydrodynamic processes in weightlessness conditions

is the impossibility to completely get rid of the influence of gravity. In this case, the Grashof number
, where  is the acceleration of gravity,  is the characteristic density difference in a

liquid or a system of liquids,  is the vertical size of the liquid volume,  is the initial density of the liquids
in the system, and is the kinematic viscosity, is traditionally taken as a basis [1–3]. The change of two
parameters is used in most cases:  in hydrostatic problems and  in convective problems.

Reducing the density difference of the liquids in a system allows the shape and behavior of liquid vol-
umes to be estimated in microgravity conditions. Such an approach (hydro-weightlessness) was first
applied by J. Plateau in 1840 when studying the shape of droplets in a rotating liquid [4]. A vertical density
gradient, at which the droplet itself finds the position of equal density, is mainly created to implement this
approach [5, 6]. It should be noted that the attainment of a density equal to that of the surrounding
medium by the droplet does not impede the onset of gravitational convection within the droplet itself if
a liquid with a density different from the density of other components of the system diffuses through the
interface. In particular, the “turnover” of a droplet of a two-component mixture suspended in a den-
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MODELING OF THE MARANGONI INSTABILITY 1265
sity-stratified solution is explained precisely by the development of Rayleigh–Taylor instability due to
diffusion [7].

A decrease in vertical size  allows the intensity of gravitational convection to be effectively influenced
while keeping all of the other physical-chemical properties of the medium unchanged. However, it should
be remembered that in an experiment it is possible to reduce the Grashof number by varying  only to a
certain limit. This limit is determined by both the resolving power of the experimental setup and the
necessity of keeping the ratio of the regions of dominance of gravitational and capillary (or different one
unrelated to gravity) convection constant. The violation of the latter condition will lead the modeling to
the loss of adequacy.

At the time, to simulate the microgravity conditions, attempts were made to select other parameters.
For example, in [8] it was proposed to use the Morton number , where  is the surface
tension and  is the dynamic viscosity, as a dimensionless parameter. In this case, to achieve the similarity
of two non-isothermal hydrodynamic processes, the equality of the corresponding numbers serves as a
necessary and sufficient condition: , , , , and , where  and are the thermal expan-
sion and surface tension change coefficients, while  and  are the Prandtl and Schmidt numbers.
However, the basic idea of this approach, i.e., the replacement of the working liquid from a space experi-
ment by another one corresponding to ground-based modeling in changed temperature conditions, is
unrealizable in practice in view of the absence of pairs of liquids with equal values of  and .

The approach proposed in [9] is also questioned due to the large number of similarity criteria used,
including the physical-chemical properties of liquids. In contrast, the dynamic Bond number

, where  and  are the Rayleigh and Marangoni numbers, has been successfully applied
to describe the interaction of free, thermo- [10], and concentration-capillary [11] convections under var-
ious gravity conditions. However, this approach also turns out to be limited, given the threshold onset of
Marangoni convection in real conditions due to the presence of uncontrolled surface-active impurities
[12]. In this case, retaining the Grashof number as a similarity criterion looks optimal.

Recently (see [13]), an additional way of reducing the Grashof number has been proposed for diffusion
problems in a system of immiscible liquids. It consists in initially setting the densities of the base liquids
on both sides of the interface equal to the diffusing liquid density. All of the subsequent density variations
in this situation are connected only with the contraction effect, whose essence is a non-additive change of
the volume as a result of the absorption or diffusion of one of the system’s components or the phase tran-
sition made by the system. A change in the intermolecular distance and the formation of a spatial structure
(as the system’s state changes) or the “repacking” of molecules of the liquid mixture base component
when the second component appears or disappears serve as a cause of contraction. As estimates show, the
density differences arising from contraction can reach a value sufficient for the initiation of free convec-
tion. However, most often they are still smaller than those in the case of diffusion in a system with an ini-
tially arbitrary density of the base liquids approximately by an order of magnitude. Thus, using systems of
equal-density liquids to model the hydrodynamics of microgravity may be deemed appropriate if we
assume the Grashof number to be sufficiently small and require a geometrical similarity of the systems and
an equality of the corresponding Marangoni and Schmidt numbers, because the ratio of the viscous and
diffusion times becomes significant in nonstationary conditions. The goal of this paper is to illustrate the
capabilities of this approach.

2. MATHEMATICAL MODEL

Consider the two-dimensional problem of concentration convection in a plane channel (  and  are
the channel length and height) filled with a homogeneous liquid. A droplet of another liquid insoluble in
the main liquid (droplet width ), which completely covers the channel and contains a surfactant, is
placed at one of its ends. In the experiment presented below the channel was filled with an aqueous solu-
tion of sodium chloride (base liquid 1). A mixture of chlorobenzene and benzene (base liquid 2) as well as
acetic acid was used to create the droplet. The densities of the base liquids were set equal to the acid density

. The acid possesses the lowest surface tension with respect to these liquids and, therefore, is a surfactant
for them. The surface tension under nonuniform diffusion is a function of acetic acid concentration ,

 (here,  and  are the interfacial tension and the concentration coefficient of its change)
and may turn out to be responsible for the liquid motion (Marangoni convection). For the simplicity of
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Fig. 1. Geometry of the region: 1 is the channel filled with base liquid 1; 2 is the droplet.
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our numerical model, we assume that the boundary between the liquid in the channel and the droplet is
f lat. The geometry of the region is shown in Fig. 1.

The system of liquids is peculiar in that the base liquids are virtually insoluble in each other and would
keep the density constant in the process of extraction and dissolution of the acid were it not for the con-
traction effect. To a first approximation, this change in density may be assumed to be proportional to the
change in surfactant concentration: , where  are the “volume expansion” coefficients
of the liquids related to the contraction effect.

As our experiment showed, acid diffusion from the ternary mixture leads to a temporary increase in the
density of the forming “depleted” (binary) mixture, i.e., the acetic acid in its equation of motion may be
considered as a light impurity. The acetic acid dissolution in water and aqueous solutions is accompanied
by positive contraction and, hence, for the liquid in channel 1 the acetic acid in the convection equations
should be considered as a heavy impurity. Accordingly, the density nonuniformity resulting from contrac-
tion leads to the development of gravitational convection both in the droplet and in the channel in the
gravity field.

The complete system of free convection equations in the Boussinesq approximation in dimensionless
variables “stream function , vorticity , and concentration c” is [14]

(1)

Here, ,  and  are the Grashof and Schmidt numbers;  is the maximum surfactant con-
centration in the initial state;  and  are the kinematic viscosities and diffusion coefficients of the liq-
uids. As units of measurement we take:  for the distance,  for the time,  for the stream function,
and  for the concentration. In weightlessness conditions the Grashof numbers should be set equal to
zero when describing the convection.

Let us discuss the boundary conditions. We assume the upper, lower, and left boundaries of the chan-
nel to be solid and impermeable to the material:

(2)

(3)

The right boundary of the liquid in the channel in our experiment is in contact with the large volume of
the sodium chloride solution. Therefore, we will set the following conditions at this boundary:

(4)
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MODELING OF THE MARANGONI INSTABILITY 1267
We assume the interface between the liquids to be f lat, impermeable to the base liquids, but admit that
there is a diffusion flux of the surfactant (in our experiment the acetic acid that dissolves without limit in
the aqueous solution) through it:

(5)

In the adopted model we assume that there is a film of uncontrolled surface-active impurities at the inter-
face that hinders its motion. The capillary force related to the soluble surfactant concentration gradient
emerging during nonuniform diffusion and the viscous stresses at the interface try to set it in motion and
this will happen when the sum of these forces will exceed the threshold value  characterizing the strength
of the surface film in some place. Thereafter, the film is destroyed and the tangential velocity of the inter-
face becomes nonzero, which gives rise to a f low whereby the capillary force is again balanced by the vis-
cous stresses. Let us write the boundary and initial conditions corresponding to what is going on:

for the stationary boundary

(6a)

with the expression controlling the boundary immobility

(6b)

for the moving interface

(7a)

(7b)

Here, is the Marangoni number, ; , where and  are the dynamic

viscosities of the liquids. In this case, Eq. (7b) differs fundamentally from Eq. (6b), which shows the pos-
sibility of surface film destruction when the capillary force in some place has the same direction with the
viscous force (though their directions are determined by different factors), while Eq. (7b) describes the
balance of the viscous stress and capillary force, which always takes place at a free boundary;

–the absence of foreign uncontrolled impurities at the interface is taken into account as  and the
condition (7b) is used in this case;

–at the initial time the liquids are at rest; in region 1 (see Fig. 1) there is no surfactant; in droplet 2 the
concentration of the soluble surfactant is everywhere the same and is equal to 1 in dimensionless form:

3. NUMERICAL PROCEDURE
The formulated nonstationary boundary-value problem (1)–(7) was solved by the finite difference

method in regions 1 and 2 on  square grids using the implicit Crank–Nicholson scheme for equa-
tions with a time derivative. The Poisson equation for the stream function was solved by the successive
over-relaxation method. We abandoned the geometrical similarity (in our calculations we assumed that

) with the experiment described below, because the computation time increased very much (by
more than a factor of 20 when retaining the similarity). The goal of our numerical experiment was a qual-
itative determination of the possible convection modes at small Grashof numbers.

The initial condition for the surfactant concentration in region 2 in our numerical computations was
replaced with a smoother condition:

where  is the maximum grid point number in coordinate  in region 2. The chosen coefficient in the
exponential imparts a sufficiently rapid increase in the surfactant concentration as one recedes from the
interface.
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Fig. 2. Maximum value of the stream function in the droplet versus time for , , , and various values
of the number  1 × 105 (dash-dotted line), 3 × 105 (dashed line), and 5 × 105 (solid line).
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The dimensionless parameters of the problem were close to the experimental ones: ;
; ; , , , . The Marangoni number varied from 

to .

4. RESULTS OF THE NUMERICAL EXPERIMENT

In the first numerical experiments the diffusion process was studied in the absence of contraction, i.e.,
at zero Grashof numbers. At  uniform surfactant diffusion was observed in the range of Marangoni
numbers under consideration and no liquid motion arose. At  and Marangoni numbers greater than
50 000 the uniform diffusion became unstable at some instant of time: a surfactant concentration gradient
appeared along the interface between the liquids, which was followed by Marangoni convection. The time
dependence of the intensity of liquid motion in the droplet (the maximum value of the stream function)
for three Marangoni numbers is shown in Fig. 2.

For  the first “outburst” of Marangoni convection occurs at  and lasts until .
Thereafter, slow motion by inertia is observed until the nearly uniform diffusion again becomes unstable,
while at  the second cycle of Marangoni convection develops. Thus, the time between the first two
outbursts of Marangoni convection in the absence of gravitational convection is ~15 dimensional time
units.

Figure 3 shows how the structure of the motion changes with time. The liquid motion both in the chan-
nel and in the droplet is attributable to the motion of the interface and has the same structure with a very
close intensity. A significant change in the structure of the motion follows after the second outburst of
Marangoni convection. There is a transition from the motion in the form of two pairs of matched vortices
to one pair executing small oscillations along the interface between the regions.

Consider the influence of contraction on the diffusion process. First let us analyze the f low in the
absence of a film of uncontrolled impurities . The gravitational convective motion arises immedi-
ately, as soon as the diffusion process begins. The density of the liquids on both sides of the interface
becomes higher than the density in the remaining volume; clockwise and counterclockwise motion begins
in the droplet and the channel, respectively. As a result, a vertical surfactant gradient is created, which
leads to Marangoni convection. The flow intensity in the droplet at  for various Marangoni num-
bers is presented in Fig. 4.

In the case under discussion, Marangoni convection in the lower part of the interface maintains grav-
itational convection through an increase in the intensity of the lower pair of vortices and decelerates the
motion in the upper part of the channel. The convective f low structure and the surfactant concentration
distribution are shown in Fig. 5. As can be seen, a vertical density stratification of the liquid is formed in
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Fig. 3. Isolines of the surfactant concentration (upper row) and isolines of the stream function (lower row) at the specified

instants of time for , , , .

t = 1.0 t = 12 t = 16 t = 20

t = 21.5 t = 25 t = 28 t = 30

= × 5Ma 5 10 =1Gr 0 =2Gr 0 =0 0P

Fig. 4. Maximum value of the stream function in the droplet versus time for , , , and various
values of the number  1 × 105 (dashed-dotted line), 3 × 105 (dashed line), and 5 × 105 (solid line).
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the case of an intense convective f low in the channel and the droplet and the motion slows down until the
onset of diffusion instability at , as a result of which intense Marangoni convection develops
( ). Several more outbursts of this convection are observed subsequently, for example, at , but
they are much less intense.

∼ 12t

= 16t = 20t
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Fig. 5. Isolines of the concentration (upper row) and isolines of the stream function (lower row) at various instants of time

for , , , .

t = 1.0 t = 12 t = 16 t = 20

= × 5Ma 5 10 = −1Gr 50 =2Gr 50 =0 0P

Fig. 6. Maximum value of the stream function in the droplet versus time for , , , and various
values of the number  1 × 105 (dash-dotted line), 3 × 105 (dashed line), and 5 × 105 (solid line).
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Next consider the development of diffusion and convective motion when there is a film of insoluble
impurities impeding the motion at the interface. Our calculations were performed for a limiting value of
the parameter , which, recall, characterizes the strength of the surface film of impurities. As our
calculations showed, this limiting stress is reached at  at . Until this time the film was
assumed to be solid and no convective motion was conveyed through the interface. Subsequently, intense
Marangoni convection develops and a vertical density stratification decelerating the motion is formed.
The change in the intensity of motion with time in the droplet is demonstrated by Fig. 6. The second out-
burst of Marangoni convection occurs at  and it is much less intense. The interval between these
outbursts of convection is ~13.5 time units.

The case under consideration differs from the previous one, where there was no Bingham film at the
interface between the liquids, in that the vertical stratification is formed more slowly and, as a conse-
quence, the outbursts of concentration-capillary convection are intensified. The structure of the convec-
tive motion and the surfactant distribution in the droplet and the channel are shown in Fig. 7. Marangoni
convection is presented on the frames corresponding to , 14, and 20.

Our calculations showed that at sufficiently large Marangoni numbers  the diffusion
process leads to the development of instability in the system of immiscible liquids and a soluble surfactant,
provided that their densities are equal, even in the absence of contraction. The emerging capillary motion
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Fig. 7. Isolines of the concentration (upper row) and isolines of the stream function (lower row) at various instants of time

for , , , .
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= × 5Ma 5 10 = −1Gr 50 =2Gr 50 =0 10P
is oscillatory in pattern and has the same structure with a very close intensity of motion on both sides of
the interface. Contraction in the absence of a film of insoluble surface-active impurities immediately leads
to an outburst of intense Marangoni convection, with the second outburst of capillary motion being deter-
mined by the instability of uniform diffusion at large Ma. Approaching the real conditions of a physical
experiment (the presence of a film of impurities) gives rise to steep surfactant concentration gradients in
both regions and only afterwards does it lead to the threshold onset of capillary convection in them.

5. TECHNIQUE OF THE LABORATORY EXPERIMENT
The goal of the full-scale experiment was to solve two problems: to verify the results of our numerical

simulations and to assess the role of contraction in the development of convective motion near the inter-
face.

Let us consider the contraction effect in more detail using the dissolution of acetic acid in water as an
example. In Fig. 8a the tabular and calculated (in the case of additive mixing) densities of the acid solution
are plotted against the acid mass concentration. The change in intermolecular distance due to the
“repacking” of molecules and the formation/destruction of a “coat” from molecules of one component
around molecules of the other component in the solution as the concentration of one of the components
changes, for example, during the absorption or dissolution processes, is responsible for the observed dis-
crepancy (Fig. 8b). Since the intermolecular interaction underlies the contraction effect, the characteris-
tic time it takes for the equilibrium (tabular) densities to be established is tens of hours, which is longer
than the characteristic lifetime of the convective motion arising under diffusion from a finite liquid mix-
ture volume by hundreds of times. Accordingly, the question of how strongly the contraction effect actu-
ally influences on the development of convection under diffusion remains open.

We experimentally studied the development of convection caused by the diffusion of a surfactant in a
system of liquids with initially equal densities in a horizontal channel with a vertical interface. As the base
(contacting) liquids we used a mixture of benzene and chlorobenzene (base liquid 2) and an aqueous solu-
tion of sodium chloride (base liquid 1). The initial densities of the base liquids were equal to the density
of the diffusing component whose role was fulfilled by acetic acid. The acid was initially concentrated in
the binary mixture.

The acetic acid density at temperature  is known [15] to be 1.042 g/mL. To reach the same
density, the mass concentration of benzene in its mixture with chlorobenzene was brought to .
The concentration of sodium chloride in water was  [15]. The densities of the working liquids
were determined with a Sigma 701 KSV tensiometer.

An autocollimation Fizeau interferometer with a digital video camera connected to a computer (Fig. 9)
was used to study the structure and evolution of the concentration fields and flows. To carry out our exper-
iments, we chose a cuvette with a rectangular  mm3 cavity (Fig. 10). A horizontal channel of
height 2.6 mm, width 1.4 mm, and length 36 mm was formed in the cavity by parallel glass inserts. A num-

= °25 Ct
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=02 7.2%C

× ×75 26 1.4
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Fig. 8. (a) Acetic acid density in water versus concentration at 20°С: 1—the tabular values [15], 2—the calculated values
under additive mixing; (b) the difference of the tabular and calculated values. 
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Fig. 9. Scheme of the Fizeau interferometer: 1—helium-neon laser; 2, 3—turning mirrors; 4—microlens; 5—collimator
lens; 6—interference cuvette; 7—video camera.
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1

Fig. 10. Scheme of the cuvette: 1—tube for mixture injection; 2—mixture droplet; 3—moving partition; 4—solution; 5—
plane-parallel glasses (cuvette walls).

1
2 3 4

5

ber of holes were made in the cuvette to pour liquid 1 into and out of it and to mount a moving partition
3 to initially separate the system’s liquids. The mixture droplet volume was much smaller than the solution
volume (the channel was connected with a large reservoir 4).

All our experiments were performed in accordance with the following technique. The channel was ini-
tially divided into two parts with the moving partition. A mixture containing acetic acid was poured into
the left part of the channel through a tube. The right part was filled with an aqueous solution of salt,
whereupon the partition was removed and the acid diffusion process began, whose dynamics was traced
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS  Vol. 60  No. 7  2019
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Fig. 11. Evolution of the concentration field near the interface (the mixture droplet is on the left, the aqueous solution
is on the right); the initial acid concentration in the droplet  at various times from the instant of droplet cre-
ation t, s: 3 (a), 13 (b), and 30 (c).

(a)

(b)

(c)

=0 10%C
with the interferometer in real time. The experiments were conducted at an ambient temperature of
(24±1)°С.

6. DESCRIPTION OF RESULTS

Owing to contraction, the acid diffusion is accompanied by a change in the density of both contacting
liquids. Let us point out the peculiarities of the system chosen for our study. In particular, replacing the
hydrogen atom with the chlorine atom makes chlorobenzene polar. This fact complicates significantly the
formation of a homogeneous mixture of chlorobenzene and nonpolar benzene. A number of studies have
revealed that the forming mixture acquires a spatial structure, while the introduction of acetic acid
destroys it. As a consequence, a temporary (for several hours) increase in the volume compared to the ini-
tial one and, accordingly, a decrease in the density of the ternary mixture (there is negative contraction)
is observed in the mixing process. Subsequently, the mixture returns to the original density. In contrast,
the acid diffusion from the ternary mixture leads to an increase in the density of the emerging “depleted”
(binary) mixture. Note that the dissolution of acetic acid in water and aqueous solutions of inorganic salts,
just as in the case of ethyl alcohol, is accompanied by positive contraction.

It is well known [12] that in the presence of surface-active impurities at the interface, it starts moving
only when a certain surface tension gradient created by a concentration or temperature difference is
reached. Figure 11 shows a series of interferograms displaying the development of diffusion at low (sub-
threshold) initial acid concentrations in the droplet (the central part of the channel is presented). It is
clearly seen that, in this case, the concentration isolines are parallel to the interface throughout the exper-
iment. As a consequence of contraction, both the depleted mixture and the acid-enriched aqueous solu-
tion acquire a higher density than that in the initial state. As a result, the layers of the liquids with a
changed acid concentration flow down along the interface and propagate along the channel bottom, form-
ing a weak advective f low of gravitational nature. A maximum change in surfactant concentration and,
accordingly, surface tension occurs in the meniscus region near the upper part of the channel.

The intensity of mass transfer in the system of liquids increases sharply when the concentration 
reaches a value exceeding the threshold one for the development of Marangoni convection (Fig. 12). The
emerging capillary motion spans much of the channel, destroying the concentration distribution formed
by diffusion. The competition between the intense capillary f low leveling off the nonuniform concentra-
tion distribution along the interface and the slow advective f low restoring the vertical concentration dif-
ference along it leads to the establishment of an oscillatory mode of concentration convection. The form-
ing f low is in the form of two paired vortices and corresponds to the structure of the convective motion at

0C
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Fig. 12. Evolution of the concentration field near the interface  at various times from the beginning of the
Marangoni convection cycle , s: 1 (a), 3 (b), and 4 (c); the time from the instant of droplet creation before the beginning
of the cycle is  s.

(a)

(b)

(c)

=0 20%C
τ

= 29t
the initial stage in our numerical experiment for weightlessness conditions. Such a system of vortices was
obtained in [16] based on the model with a surfactant surface phase in the case where the adsorption and
desorption coefficients of medium 1 exceeded those of medium 2.

The “terrestrial specificity” of the dynamics of the system of liquids under study manifests itself as fol-
lows. A vertical density (and acid concentration) distribution of the base liquids resembling the one in
Fig. 11c is established in the bulk of the channel immediately after the completion of the first outburst of
capillary motion. As a result, the upper vortex of the next outburst of Marangoni convection develops in
a mixture with a larger acid content than does the lower one and is characterized by an increase in the
intensity of motion and the mass f low rate through the interface. The intensity of the latter process is so
high that the acid concentration gradient between the vortex and the remaining mixture volume is per-
ceived visually as an interface. The lower vortex is largely formed through viscous friction.

The upper vortex increases in sizes with time (Fig. 12b), gradually becomes denser than the surround-
ing mixture, and begins to compress the lower vortex (Fig. 12c). As a result, it cuts off the mixture f low
maintaining the acid concentration difference along the interface and the capillary motion ceases, while
the vortex itself slows down, settles, and frees the upper part of the interface for mixture inflow. The fresh
flow touches the interface and the cycle is repeated.

To describe the oscillatory mode, let us choose the time interval between the onsets of intensification
of the capillary motion in two successive cycles as a characteristic. This interval consists of two parts: the
times of dominance of either capillary or gravitational convection within one cycle. The duration of the
capillary and gravitational convections in different cycles of motion is illustrated by Fig. 13, from which it
can be seen that the duration of the cycles is not a regular function. However, there is a clear tendency for
it to increase with increasing number of oscillations through the growth of the gravitational convection
time. To compare the real time in seconds with the dimensionless time used in our calculations, the former
should be divided by 6.5. Since the horizontal sizes of the regions in the numerical and full-scale experi-
ments differ significantly, it makes sense to compare the times only in the first cycle of motion, when the
flow in the peripheral parts of the regions had no time to manifest itself. The duration of the first convec-
tion cycle in our experiment is about 5 s or 0.8 dimensionless time units; for the second cycle it is 11.5 s or
1.8 dimensionless time units. In the numerical model with insoluble impurities the lifetime of the first
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS  Vol. 60  No. 7  2019



MODELING OF THE MARANGONI INSTABILITY 1275

Fig. 13. Lifetime of the capillary (1) and gravitational (2) convections near the interface of the mixture with
and the aqueous solution of sodium chloride with  versus number of cycles. 
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Fig. 14. Time change of the relative droplet volume in the mixture with  in the acid diffusion process.
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cycle is 13.5 time units. This discrepancy is thought to be a consequence of the difference in channel length
during our experiment and calculations.

In the experiment the droplet volume decreases as the acid diffuses. As our measurements suggest
(Fig. 14), such a change in the droplet volume with time is nearly linear. This behavior most likely stems
from the fact that maximum acid diffusion occurs at the capillary stage of the cycle, with the mixture con-
tained in the Marangoni cell volume being mainly drawn into this process. Our measurements revealed
that whereas at the beginning of the oscillatory mode this cell occupies approximately 1/10 of the entire
droplet volume, by the end, after the reduction in acid content in the mixture, it encloses up to 1/3 of the
droplet. Given that the duration of the capillary convection changes little during the entire experiment
(see Fig. 13), it can be assumed that a similar amount of acid leaves the droplet in each cycle, as confirmed
by Fig. 14.

In conclusion, note that the Marangoni convection ends long before the complete acid depletion in the
droplet. An analysis of the video of our experiment and the dependence shown in Fig. 14 lead us to the
following conclusion: the change of modes occurs at an acid concentration of about 11% (at t = 200 s),
which is higher than 10% — the threshold value for the system under consideration. This fact suggests that
insoluble impurities accumulate at the interface during diffusion.

The measures to prepare the cuvette itself play a major role in the temporal evolution of the system of
liquids. For example, the peculiarities of its design did not allow the walls to be cleaned before each exper-
iment; the number of insoluble impurities in the cuvette increased with time. As a consequence, whereas
at the beginning of the series of experiments there was a convective mode during which, as our theoretical
analysis predicted, the number of vortex pairs had time to decrease to one and, thereafter, it was replaced
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by a diffusive one, in the succeeding experiments the diffusive mode arose already after the stage of the
convective mode, at which two pairs of cells were present.

Within our main experiment we also performed a series of additional measurements to elucidate the
causes of the development of intense convection in the chosen system of liquids. It particular, we found
that sodium chloride added to water to achieve the equality between the initial densities of the system’s
liquids did not change, contrary to expectation, the form of the concentration dependence of the solution
density, i.e,  remains as before. Given this fact, we attempted to use a bell-shaped form of the con-
centration dependence of the acid solution density (see Fig. 8a), for which purpose the solution of neutral
salt was replaced by an aqueous solution of acid. The experiment turned out to be fruitless, because the
acid content in both contacting liquids should be increased sharply to pass into the region of necessary
concentrations. However, the mutual solubility of the base liquids increases with leading rates as the acid
concentration grows; near  the interface disappears and a significantly inhomogeneous three-
component solution is formed.

7. CONCLUSIONS
The diffusion of a surfactant in a system of liquids with equal initial densities and a vertical interface

was studied experimentally and theoretically. The contraction effect accompanying the change in surfac-
tant concentration on both sides of the interface was found to generate local liquid density nonuniformi-
ties and to produce gravitational convection. However, these density differences, at least in one of the liq-
uids, remain smaller than those in a system based on single-component liquids by an order of magnitude.

The capillary motion in the chosen system of liquids was shown to arise in a threshold way, with the
final concentration f low acquiring an oscillatory pattern. The structure of the f low and its evolution are
qualitatively confirmed by our numerical simulations of the diffusion in systems with contraction and
Bingham behavior of the interface in microgravity conditions.
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