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Abstract: Direct numerical simulations of instability development and transition to turbulence
in a supersonic boundary layer on a flat plate are performed. The computations are carried out for
moderate supersonic (free-stream Mach number M = 2) and hypersonic (M = 6) velocities. The
boundary layer development is simulated, which includes the stages of linear growth of disturbances,
their nonlinear interaction, stochastization, and turbulent flow formation. A laminar–turbulent
transition initiated by distributed roughness of the plate surface at the Mach number M = 2 is also
considered.
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INTRODUCTION

The study of the laminar–turbulent transition is one of the most challenging problems of fluid mechanics.
Researchers pay much attention to this problem because the onset of turbulence significantly alters the flow prop-
erties. When the laminar–turbulent transition occurs in the boundary layer, the drag force and the heat fluxes on
the body surface are substantially enhanced. Therefore, refinement of the mechanisms of turbulence origination
and development of effective methods of transition control can make the transportation vehicles more cost-efficient;
moreover, it will be possible to create supersonic passenger airplanes and advanced hypersonic flying vehicles of the
new generation.

The initial stage of the transition to turbulence in supersonic boundary layers, which includes the growth of
small perturbations and is described by the linear theory of hydrodynamic stability, has been well studied [1, 2], in
contrast to nonlinear evolution and interaction of disturbances directly leading to the transition. The capabilities
of analytical approaches to studying these phenomena are rather limited, and the experiments in supersonic wind
tunnels are rather labor-consuming and expensive. Under these conditions, numerical simulations starts to play a key
role. Permanent enhancement of computer power and improvement of numerical algorithms provided a possibility
of direct numerical simulation of the transition to turbulence on the basis of solving full three-dimensional Navier–
Stokes equations. The first calculations of nonlinear development of perturbations in supersonic boundary layers
were performed in the early 1990s [3, 4]. At the moment, numerical simulations can be used to study the processes
that occur at all stages of the transition to turbulence: from the stage of transformation of the boundary layer
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flow to instability waves of the near-wall shear flow under the action of external acoustic disturbances to the stage
of laminar flow breakup due to rapid growth of small-scale three-dimensional oscillations accompanied by flow
stochastization, which testifies to the transition to turbulence.

The present paper describes the results of numerical simulations of the transition to turbulence in a supersonic
boundary layer at Mach numbers M = 2 and 6, in particular, the transition induced by surface roughness.

FORMULATION OF THE PROBLEM AND NUMERICAL METHOD

The evolution of an unstable supersonic boundary layer on a flat plate is modeled in a computational domain
shaped as a rectangular parallelepiped. Three-dimensional unsteady Navier–Stokes equations for a gas with the
ratio of specific heats γ = 1.4 and Prandtl number Pr = 0.72 are solved. The dynamic viscosity µ as a function
of temperature T has the form of a power-law dependence with an exponent of 0.76, and the Stokes hypothesis is
assumed to be valid for viscous stresses.

The left boundary of the computational domain is located at a certain distance x0 from the leading edge of
the plate, such that the boundary layer in the input section is unstable. Thus, in contrast to other investigations
where, in particular, receptivity to external disturbances was considered, here we neglect the effects induced by the
presence of a weak shock wave emanating from the leading edge of the plate and its interaction with instability
waves.

Two-dimensional simulations of the main flow are first performed; the conditions imposed on the input
boundary are the streamwise and transverse velocity and temperature profiles obtained from the self-similar solu-
tion of the boundary layer equations. After that the development of unstable disturbances and the transition to
turbulence are computed. Instability waves can be excited by different ways, in particular, by means of unsteady
injection/suction on a certain region of the plate surface and by using an external source of acoustic waves. In the
present study, the flow is excited by unsteady perturbations prescribed at the input boundary as a superposition of
eigenfunctions of the linear stability problem, which corresponds to the transition in the case of moderate-amplitude
external perturbations, where exponential growth of eigenmodes described by the linear theory prevails at the initial
stage of instability development.

In modeling the evolution of three-dimensional disturbances, the side boundaries of the computational do-
main are subjected to periodic boundary conditions. The spanwise size of the computational domain Lz is taken to
be 2π/β (β is the wave number of the disturbance in the z direction). Soft non-reflecting conditions are imposed
on the upper (y = Ly) and output (x = x0 +Lx) boundaries. To prevent reflection of disturbances from the output
boundary, a buffer domain is additionally introduced ahead of this boundary, where artificial relaminarization of
the flow is performed by a special technique proposed in [4]. The results of test computations testify to a minor
effect of the output boundary on the flow field inside the computational domain. All computations are performed
for the plate surface temperature equal to the adiabatic temperature.

The Navier–Stokes equations are solved by using the CFS3D software system developed at the Khristianovich
Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences. The
equations are solved on a structured computational grid, which is refined toward the plate surface. The convective
fluxes are computed by a fifth-order weighted essentially non-oscillatory (WENO) scheme [5]. The diffusion terms
are approximated with the fourth order of accuracy on a compact stencil. Integration with respect to time is
performed by the explicit fourth-order Runge–Kutta–Gill scheme [6]. The time step is chosen automatically based
on the condition of stability. A detailed description of the method used to solve the Navier–Stokes equations can be
found in [7]. The computational algorithm is parallelized by means of geometric decomposition of the computational
domain, and the message passing interface (MPI) library is used for data exchange between the processors. Up to
96 cores of a multiprocessor computational cluster were used for the present simulations.

TRANSITION AT THE MACH NUMBER M = 2

It follows from the linear stability theory [1, 2] that only one (the so-called first) mode of disturbances in
the boundary layer is unstable at moderate supersonic velocities. Disturbances of this mode are vortex perturba-
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tions similar to the Tollmien–Schlichting waves in an incompressible boundary layer. However, in contrast to the
incompressible fluid, the most unstable perturbations at M = 2 are three-dimensional disturbances propagating at
a sufficiently large angle (50–70◦) to the flow.

The mechanisms of instability development in boundary layers at moderate supersonic Mach numbers at
subsequent (nonlinear) stages were experimentally investigated in [8–11]. Based on these results, two possible
transition scenarios were proposed. The first one is based on resonant interaction of an oblique fundamental wave
with a frequency ωm corresponding to the maximum growth rate coefficient and two subharmonic waves with a
frequency ωm/2, which also propagate at an angle to the flow. Using the relation ω = ω(α, β) known from the linear
theory, one can calculate the angles of propagation of these subharmonics from the phase synchronism conditions.
This asymmetric subharmonic resonance was discovered experimentally [10].

The second scenario of the transition was proposed in [12] on the basis of results of direct numerical sim-
ulations of disturbance evolution in subsonic and supersonic (M = 1.6) boundary layers. It implies nonlinear
interaction of two fundamental waves propagating at angles ±χ to the flow. Together with the steady vortex distur-
bance, these waves form a resonant wave triad. A typical feature of this mechanism is a lower threshold amplitude
at which nonlinear interaction of waves begins, resulting in a faster transition. Comparisons of numerical and
experimental data [13] confirm the resonance of oblique waves with a steady wave disturbance. Thus, the results
reported in [10, 13] testify to the existence of a transition mechanism with a resonance character.

The numerical simulations [12–18] were mainly performed in accordance with the second scenario. The point
is that periodic boundary conditions in the spanwise direction cannot be used in subharmonic resonance modeling
because the wave number of the fundamental harmonic and subharmonics in this direction are incomparable,
generally speaking. As a result, the size of the computational domain along the z axis and, hence, the required
computational resources become too large.

In the present calculations, the Reynolds number based on the boundary layer thickness δ0 =
√

ν∞x0/U∞
on the input boundary x = x0 was chosen to be Re = U∞δ0/ν∞ = 500, whereas the Reynolds number based
on the distance from the leading edge of the plate was Rex = U∞x/ν∞ = Re2 = 2.5 · 105. At these flow pa-
rameters, the plate temperature is equal to the adiabatic temperature Tw/T∞ = 1.676 (the subscripts “∞” and
w refer to the parameters outside the boundary layer and on the wall, respectively). The streamwise size of the
computational domain is Lx = 3000δ0 and the normal size is Ly = 100δ0. The computational grid consists of
Nx ×Ny ×Nz = 1024× 150× 64 ≈ 9.8 · 106 cells.

The linear stability characteristics are analyzed for a self-similar basic flow at the input boundary of the com-
putational domain under the assumption of spatial development of disturbances: the disturbances are proportional
to exp [i(αx+βz−ωt)] (ω is the real circular frequency of the disturbance, α = αr+iαi, αr and β are the wave vector
components along the x and z axes, respectively, −αi is the growth rate of disturbances, and χ = arctan (β/αr) is
the angle of disturbance propagation). The frequency parameter F = ν∞ω/U2

∞ and the angle χ are varied, which
allows one to determine the ranges of parameters of unstable disturbances and parameters of disturbances with the
maximum growth rates. The calculated characteristics of linear stability for this case were reported in [18].

A superposition of two unstable disturbances propagating at the angles χ = ±55◦ to the basic flow was
imposed onto the latter. The dimensionless frequency of disturbances F = 6.2 · 10−5 is the frequency at which
the growth rate reaches its maximum value, and the amplitude is 0.5% of the free-stream velocity. The simulated
evolution of such a disturbed flow is illustrated in Fig. 1.

The development of disturbances includes several stages. When the linear stage is finalized, a secondary
flow is formed from streamwise vortex structures whose characteristic sizes in the normal and transverse directions
are of the order of the boundary layer thickness. It should be noted that the formation of such structures was also
observed in [4]. It follows from the analysis of cross-sectional vorticity distributions that the streamwise vortices
first evolve independent of each other, but their transverse sizes slowly increase as they move downstream. At a
certain time, the entire transverse flow field becomes involved into vortex motion.

After that the secondary instability starts to develop, which includes rapid growth of three-dimensional
fluctuations leading to the laminar–turbulent transition. The instantaneous fields of gas-dynamic variables acquire
a random character (see Fig. 1).

The mean velocity profiles obtained after averaging with respect to time (over an interval equal to eight
periods of the imposed disturbance) and with respect to Lz are shown in Fig. 2. It is seen that the velocity profile
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Fig. 1. Isosurfaces of oscillations of the streamwise velocity component in the case of nonlinear
development of the disturbance in the form of a superposition of three-dimensional instability waves
(M = 2).

y/d0

0 0.80.60.40.2 1.0

15

25

20

10

5

35

30

40

U/U 1

4
5

1
2
3

x/d01000 1500500 2000 2500 3000

20

15

10

5

25

30

Cf .10
4

Fig. 2. Fig. 3.

Fig. 2. Mean velocity profiles in different cross sections (M = 2): x/δ0 = 1000 (1), 2000 (2),
2800 (3), 3000 (4), and 3400 (5).

Fig. 3. Distribution of the friction coefficient along the plate (M = 2): the solid curve shows
the results of direct numerical simulation; the dashed and dot-and-dashed curves show the results
calculated for the laminar and turbulent boundary layers, respectively.

corresponding to the laminar boundary layer, which almost coincides with the profile corresponding to the self-
similar solution of the boundary layer equations, transforms to an intermediate profile including an inflection point
and then becomes more filled, which is closer to the profile corresponding to the turbulent boundary layer.

Figure 3 shows the distribution of the mean skin friction coefficient Cf along the plate and the corresponding
distributions for the self-similar, laminar, and developed turbulent boundary layers (the last calculation was per-
formed by a semi-empirical method proposed in [19]). It is seen that the friction coefficient at x/δ0 . 1500 agrees
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Fig. 4. Root-mean-square fluctuations of the mass flow rate 〈m′〉 versus the Reynolds number
based on the local thickness of the boundary layer Reδ in the calculation (a) and experiments in
the presence of disturbances at the unit Reynolds number Re1 = 6.8 · 106 m−1 [11] (b): natural (1)
and artificial (2) disturbances.

well with the value of Cf corresponding to the laminar case. At x/δ0 ≈ 2700, the friction coefficient drastically
increases (by a factor of 5–6), which corresponds to the instant of the laminar–turbulent transition. After the
transition, the value of Cf fluctuates and decreases, approaching the value corresponding to a developed turbulent
flow. The transition also leads to a significant increase in the momentum thickness (more than twice as compared
to the value for the laminar flow).

Figure 4 shows the distributions of the root-mean-square fluctuations of the mass flow rate, which were
calculated in the present work and obtained experimentally in [11]. It is evident that direct numerical simulation
accurately reproduces the distribution of fluctuations over the streamwise coordinate. In particular, it should be
noted that there is a local peak of the intensity of mass flow rate fluctuations both in the calculation (at Re ≈ 650)
and in the experiments (at Re ≈ 630 in the case of natural disturbances and at Re ≈ 760 in the case of artificial
disturbances). The Reynolds numbers at the point of the laminar–turbulent transition in the calculation and
experiments are very close to each other: Retr ≈ 1150. It can be expected that the transition point location
substantially depends on the initial amplitude of the disturbance, which determines the length of the linear growth
region. However, the positions of this point in the experiments [11] are close to each other, regardless of whether the
flow is excited by natural or localized artificial perturbations. The location of the transition point in the calculation
in the case of flow excitation by spanwise-periodic disturbances corresponding to the eigenfunctions of the linear
stability theory turned out to be approximately the same. This method of flow excitation corresponds to the second
scenario of the transition.

TRANSITION AT THE MACH NUMBER M = 6

The pattern of boundary layer stability at hypersonic Mach numbers is substantially different from the
pattern observed at moderate supersonic velocities. In accordance with the linear stability theory and experimental
data, the key role in the laminar–turbulent transition at high Mach numbers belongs to second-mode disturbances,
which were first identified in [1, 2]. Two-dimensional disturbances of the second mode have the greatest growth
rates. Oblique three-dimensional disturbances of the first and second modes are also unstable, but their growth
rates are much smaller. Second-mode disturbances of a given frequency remain unstable in a rather narrow range of
Reynolds numbers. They are expected to stabilize rapidly as they move downstream. Vice versa, three-dimensional
disturbances of the first mode, which have smaller growth rates, can remain unstable at large distances. Thus,
the linear dynamics of instability of a hypersonic boundary layer describes the mechanism of the competition of
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different disturbance modes. Nonlinear interaction of instability waves at the next stages makes the wave pattern
even more complicated; as a result, various transition scenarios are possible, depending on the upstream conditions.

Numerical and experimental investigations of the evolution of unstable disturbances in boundary layers at
high Mach numbers were performed in [20–32]. Various aspects were studied: development of unstable acoustic
disturbances of the second mode [20–22], receptivity of the boundary layer transition to external acoustic pertur-
bations [23–25], influence of localized heating and cooling of the wall on the second-mode disturbances [26], effect
of surface porosity on flow stability and laminar–turbulent transition, and suppression of unstable acoustic distur-
bances by using porous coatings [27–29]. As the greatest growth rates at high Mach numbers are observed for
two-dimensional disturbances, the numerical study of the initial stages of the laminar–turbulent transition can be
performed in a two-dimensional formulation [30, 31]. It is clear, however, that the transition occurs in the case of
significant three-dimensional oscillations of the flow field. As the development of two-dimensional disturbances of
the second mode does not include a mechanism of generation of three-dimensional oscillations, it may be assumed
that the onset of turbulence is a consequence of simultaneous development of disturbances of different modes. At the
initial part of the plate, two-dimensional second-mode disturbances are rapidly enhanced, and disturbances of lower
frequencies are gradually involved into the process as the boundary layer thickness increases. The amplitudes of the
oblique waves of the first-mode disturbances grow significantly slower, but these waves generate three-dimensional
fluctuations necessary for transition initiation.

In the present computation, the input boundary of the computational domain was placed in the cross
section where Re = U∞δ0/ν∞ = 1000. The wall temperature Tw/Te = 7.053 was equal to the temperature of an
adiabatically isolated plate in a laminar flow. The computational domain had the sizes Lx = 4500δ0 and Ly = 150δ0;
the size Lz was equal to the disturbance wavelength along the z axis. The number of cells of the computational
grid was Nx ×Ny ×Nz = 2304× 250× 72 ≈ 41.4 · 106.

It follows from the linear stability calculations performed for this case in [32] that the neutral curves have
two segments at χ = 0◦: a segment of high-frequency disturbances corresponding to the second-mode acoustic
disturbances and a segment of low-frequency disturbances corresponding to the first-mode vortex disturbances.
The growth rates of the first-mode disturbances are smaller by an order of magnitude. As the angle χ increases,
the growth rates of the second-mode disturbances decrease, while those of the first-mode disturbances increase,
but their maximum value reached at χ = 62◦ is approximately three times smaller than the growth rates of the
two-dimensional disturbances of the second mode.

In direct numerical simulations, the flow was excited by a superposition of a two-dimensional disturbance of
the second mode with the frequency F = 10−4 and two symmetric first-mode waves with the frequency F = 0.5·10−4

propagating at the angles χ = ±57◦ to the flow. It follows from the results calculated for χ = 57◦ that the growth rate
of the first mode is close to the maximum value, whereas the second-mode disturbances are stable [32]. The initial
amplitudes of disturbances are approximately 0.5% of the free-stream velocity. The two-dimensional disturbance
frequency was chosen to be small as compared to the frequency of the wave with the maximum growth rate so that
the disturbance remained unstable at a sufficiently large distance from the input cross section.

The calculation shows that the two-dimensional second-mode disturbances dominate at the initial stage and
rapidly grow. The effect of the first-mode disturbances, which grow appreciably slower, is mainly manifested as
periodic deformation of initially flat “rollers” of the second-mode disturbances in the transverse direction. Figure 5
shows the vorticity regions visualized as an isosurface of the Q-criterion (half-difference of the squared norms of the
vorticity tensor and strain rate tensor) [33]. When the growth of the second-mode disturbances ceases because of the
increase in the boundary layer thickness, the first-mode disturbances continue to grow. Thus, the three-dimensional
component of the secondary flow formed due to a multiple increase in the amplitude of the oscillations of the second
mode and its subsequent stabilization continues to increase.

As three-dimensional fluctuations are enhanced, horseshoe vortex structures protruding from the boundary
layer are formed, which is consistent with the results of modeling the transition to turbulence at the Mach number
M = 4.5 in [4]. Further downstream (x/δ0 ≈ 3000), the growth of the three-dimensional disturbances leads to
breakdown of the unstable boundary layer and to the laminar–turbulent transition, which is manifested as rapid
growth of small-scale fluctuations and significant changes in all characteristics of the boundary layer. Figure 6 shows
the profiles of the mean streamwise velocity in several cross sections corresponding to the laminar (x/δ0 6 3000),
transitional, and turbulent (x/δ0 > 4000) flows.
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Fig. 5. Isosurfaces corresponding to the Q-criterion in the case of nonlinear development of a
disturbance in the form of a superposition of a two-dimensional wave of the second mode and
three-dimensional waves of the first mode (M = 6).
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Fig. 6. Mean velocity profiles in different cross sections (M = 6): x/δ0 = 1100 (1), 2000 (2),
3000 (3), 4000 (4), 5000 (5), and 5400 (6).

Fig. 7. Distributions of the friction coefficient along the plate (M = 6): the solid curve shows
the results of direct numerical simulation; the dashed and dot-and-dashed curves show the results
calculated for the laminar and turbulent boundary layers, respectively.
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During the transition to the turbulent flow regime, the skin friction coefficient increases almost by a factor
of 4 (Fig. 7). After the transition, the value of Cf fluctuates and approaches the value corresponding to the turbulent
flow.

ROUGHNESS-INDUCED TRANSITION

It is known that one of the most important factors affecting the transition to turbulence in the boundary
layer is the surface roughness. In supersonic and hypersonic flight modes, the presence of roughness caused by
structural features of the aircraft surface, ablation, contamination, and other reasons may speed up the transition
to turbulence and lead to a significant increase in the drag force and heat fluxes [34]. The influence of roughness
is most pronounced near the aircraft tip and leading edges, where the size of the roughness elements is comparable
with the boundary layer thickness.

The experimental [35] and numerical [36, 37] investigations of flow instability behind an individual roughness
element showed that streamwise structures are formed in the boundary layer due to mean flow excitation because
of the presence of such an element. These structures exist for a long time, which leads to the development of new
types of instability.

In this work, we study the influence of distributed roughness on the laminar–turbulent transition in the
boundary layer at the Mach number M = 2. The problem formulation is basically similar to that used for modeling
the transition on a smooth flat plate. These two situations differ by the fact that no perturbations are introduced
into the basic flow at the input boundary of the computational domain (corresponding to the Reynolds number based
on the boundary layer thickness Re = U∞δ0/ν∞ = 500). Instead, a band of width 100δ0 with randomly distributed
roughness elements is placed across the computational domain at a certain distance from the input boundary. The
shape of the roughness elements is defined by the function y = h cos2 (πr/(2R)), where r is the distance from
the roughness element center in the plane (x, z). The radius δ0 6 R 6 10δ0 and the height δ0 6 h 6 R of the
roughness element are random variables, which take various values within the above-indicated ranges. The roughness
distribution on the plate surface is shown in Fig. 8. The influence of the roughness elements on the generation of
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Fig. 8. Random distribution of roughness on the plate surface.

Fig. 9. Isosurfaces corresponding to the Q-criterion during the transition to turbulence in a super-
sonic (M = 2) boundary layer initiated by surface roughness.
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Fig. 10. Flow near a large roughness element: (a) pressure field; (b) local Mach number field and
streamlines.

disturbances in the boundary layer is usually characterized by the dimensionless parameter Rekk = Uhh/νh, which
is the Reynolds number based on the roughness element height and on the values of velocity and viscosity in the
laminar boundary layer at this height [34–37]. At the above-given roughness levels, the value of Rekk varies in the
interval from 40 to 5000. In the case considered here, the sonic line in the laminar boundary layer is located at the
height y = 2.85δ; therefore, some roughness elements are submerged into the subsonic region of the boundary layer,
whereas some other roughness elements protrude into the supersonic region.

The computation was performed in a computational domain with Lx = 1000δ0, Ly = 75δ0, and Lz = 100δ0 on
a surface-fitted grid consisting of Nx×Ny×Nz = 1280×200×128 ≈ 32.7·106 cells. The resultant instantaneous flow
field is shown in Fig. 9. Local perturbations of the flow field near the roughness elements are manifested as steady
horseshoe structures, and the formation of streamwise vortex structures is observed in the wake behind the roughness
elements. The intensity of the formed vortices depends on the roughness element size. The most pronounced effect
on generation of vortex disturbances is exerted by elements with heights h > 3δ0, which corresponds to Rekk > 500.

Figure 10 shows the flow field near a large roughness element with the height h ≈ 8δ0 and the vortex wake,
which develops behind it. The upper part of the element protrudes to the supersonic region of the boundary layer.
As a result, a weak shock arises ahead of the windward side of the roughness element and an expansion fan is
formed on the leeward side. The shock intensity during its propagation in the external flow rapidly decreases due
to its interaction with the expansion fan.

A high-pressure spot appears directly behind the shock wave on the windward side of the roughness element.
An increase in pressure makes the gas spread down the slope and in the side directions. The downward flow of
the gas leads to the formation of a recirculation region near the foot of the element. A secondary recirculation
region behind the element is formed owing to interaction with the flow around a smaller roughness element located
upstream. These recirculation regions serve as sources of unsteady disturbances.

The vortex structures in the wake behind large roughness elements transform further downstream to intense
streamwise vortices giving rise to large gradients of flow parameters. The resultant secondary flow includes free shear
layers prone to the action of inviscid instability. Unsteady oscillations arising in the recirculation regions can serve
as a source of instability in regions of vortex motion. It is seen in Fig. 9 that three-dimensional disturbances slowly
grow in the streamwise vortices at a certain distance downstream from the roughness band. When the amplitudes
of these disturbances reach sufficiently large values, vortex breakdown occurs (the vortices start to interact with
each other by that time). All these factors lead to explosive growth of small-scale three-dimensional oscillations
and to the laminar–turbulent transition.
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CONCLUSIONS

Direct numerical simulations of the laminar–turbulent transition in supersonic and hypersonic (M = 2
and 6) boundary layers were performed, including the early linear stages, later nonlinear stages, laminar flow
failure, stochastization, and transition to turbulence.

The transition scenario at M = 2 includes the formation of elongated vortex structures due to nonlinear
evolution of two symmetric instability waves, resulting at a certain distance in rapid growth of small-scale three-
dimensional oscillations and finally in the transition to turbulence. The predicted transition point location agrees
well with the position of this point detected experimentally.

At M = 6, two-dimensional disturbances of the second mode dominate at the early stages of the transition
and rapidly grow. The influence of three-dimensional disturbances is manifested as a modulation of the disturbed
field of the prevailing second mode and generation of three-dimensional fluctuations. Instability development pro-
ceeds faster if the boundary layer is excited by a superposition of disturbances of the first and second modes.
Three-dimensional disturbances continue to grow downstream until the transition occurs. The laminar–turbulent
transition at M = 6 is observed at a considerably greater distance from the leading edge than at M = 2.

Direct numerical simulations of the flow past a rough surface in a supersonic boundary layer at M = 2
were also performed. The presence of roughness leads to excitation of the mean flow and to the onset of unsteady
processes in the wake behind the roughness element. Owing to induced gradients of velocity, streamwise vortex
structures are formed in the wake. The downstream evolution of the vortex structures is accompanied by the
development of instability of shear layers, resulting in the emergence of unsteady three-dimensional oscillations.
The most significant disturbances are induced by roughness elements with heights h > 3δ, which corresponds to
Rekk > 500. Further downstream, the evolution of disturbances in streamwise vortex structures and interaction of
the neighboring vortices lead to the laminar–turbulent transition.

This work was supported by the Russian Science Foundation (Grant No. 14-11-00490 p). The computations
were performed at the computational cluster of the Novosibirsk State University.
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