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STOCHASTIC WAVE FINITE ELEMENT METHOD

IN UNCERTAIN ELASTIC MEDIA

THROUGH THE SECOND ORDER PERTURBATION
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Abstract: In this work, the stochastic wave finite element (SWFE) method for uncertain media
through the second-order perturbation is formulated. A parametric approach for uncertainties is
considered and combined to the finite element technique. The stochastic state space formulation is
detailed in this work. The originality of this paper is the study of the second-order perturbation.
The sensitivity and the precision of the SWFE approach are treated through the second-order per-
turbation introduced in the structural parameters. The question of the statistics of the propagation
constants and the wave modes is considered. Comparisons with analytical results and Monte Carlo
simulations are performed.
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INTRODUCTION

Many researchers proposed some structural health monitoring (SHM) techniques in order to carry out the
monitoring and the diagnosis of the risks [1, 2]. SHM is among the fields of application of guided wave propagation.
Guided waves are still a subject of intensive research. One of the primary properties of guided waves is the dispersion
curve, which yields the velocity-frequency relationship for all the modes that may propagate in the studied structure.
A wave finite element (WFE) method provides an effective way to calculate the dispersion curves of complex guided
structures and investigate their properties [3]. The WFE method regards the waveguide structure as a periodic
system assembled from identical substructures [4, 5].

In the literature, however, most of numerical issues of wave propagation simulations are mainly limited
to deterministic media. Numerical guided wave techniques in spatially homogeneous random media are investi-
gated in this paper. To deal with uncertainties in structural dynamics, extensive research has been performed
(see, e.g., [6, 7]). Uncertainties are often present in geometric properties, material characteristics, and boundary
conditions of the model. These variables are taken into account in models according to both parametric [8] and
non-parametric [9, 10] approaches. Ichchou et al. [11] considered the wave propagation features in random guided
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Fig. 1. Periodic waveguide (a) and degrees of freedom of the subsystem k on the left and right
boundaries (b): subsystem 1 (1), subsystem k (2), subsystem k + 1 (3), and subsystem N (4).

elastic media and formulated the stochastic wave finite element (SWFE) approach. This formulation allows def-
inition of wave characteristics by means of a stochastic finite element model. The case of spatially homogeneous
random properties is dealt with, through a parametric probabilistic technique. Bouchoucha et al. [12] presented
a numerical approach to study guided elastic wave propagation in uncertain elastic media. The SWFE method
formulation with consideration for spatial variability of the material and geometrical properties was developed for
the probabilistic analysis of structures. This work was extended in [13] to the diffusion matrix for uncertain media
through the SWFE method. The stochastic diffusion relationship derived in that work allows one to evaluate the
statistics of reflection and transmission coefficients under structural uncertainty.

The current study extends the WFE technique to stochastic media through the second-order perturbation.
A parametric approach for treating uncertainties is considered and combined to the WFE technique. The SWFE
method through the state space formulations is proposed. The originality of this paper is the study of the second-
order perturbation. The sensitivity and the precision of the SWFE approach is treated through the second-order
uncertainty introduced in the structural parameters. The second-order perturbation of the propagation constants
and the wave modes are investigated. The numerical accuracy and the computational efficiency of the method are
demonstrated through comparisons with analytical results.

1. FORMULATION OF THE SWFE APPROACH THROUGH
THE STATE SPACE FORMULATION

Introduction of uncertainties and specific developments leads to the state space formulation for studying
stochastic phenomena. An uncertain media is considered. The system is assumed to be a set of identical subsystems
connected along the principal direction, say, the x axis. The length of each subsystem in the x direction is denoted
as d. The formulation is based on the finite element model of a typical subsystem (Fig. 1). The left (index L) and
right (index R) boundaries of a given subsystem are assumed to contain the same number of degrees of freedom n.
The stochastic equation of motion for each sample is

D̃q̃ = F̃ ,

where

D̃ =
(

D̃LL D̃LR

D̃RL D̃RR

)
= K̃ − ω2M̃,

ω, D̃LL, D̃LR, D̃RL, and D̃RR are the elements of the dynamic matrix of size n × n, K̃ is the stiffness matrix of

size 2n × 2n, M̃ is the mass matrix of size 2n × 2n, ω is the wave number, q̃ =
(

q̃L

q̃R

)
and F̃ =

(
F̃L

F̃R

)
are

the displacement and force vectors of size 2n × 1, and q̃L, q̃R, F̃L, and F̃R are the displacement and force vectors
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of size n × 1 on the left and right boundaries, respectively. The kinematic stochastic variables q̃ and F̃ can be
represented through the following stochastic state vectors:

ũ
(k)
L =

 q̃
(k)
L

−F̃
(k)
L

 , ũ
(k)
R =

 q̃
(k)
R

F̃
(k)
R

 .

In this way, it can be shown that the state vectors ũ
(k)
L and ũ

(k)
R are related by the stochastic transfer matrix S̃:

ũR = S̃ũL.

The uncertainties are assumed to be mostly in the material properties. Such uncertainties are assumed to be
spatially homogeneous. This guarantees that the assumed periodicity will be respected both in the stochastic case
and in the deterministic situation. Random variables are modelled by the Gaussian variables through a second-order
perturbation ν̃ = ν̄ + ν1ε + ν2ε

2, where ν̃ is the random variable, ν̄ is its mean, ν1 is the first-order perturbation,
ν2 is the second-order perturbation, and ε is the standard normal distribution. The polynomial chaos (1, ε, ε2) is
used as a supplementary dimension of the problem. The random variables ũL, ũR, and S̃ are modelled by the
Gaussian variables through a second-order perturbation as

ũL =

(
q0L + q1Lε + q2Lε2

−F0L − F1Lε− F2Lε2

)
, ũR =

(
q0R + q1Rε + q2Rε2

F0R + F1Rε + F2Rε2

)
, S̃ = S0 + S1ε + S2ε

2,

where S0 is the deterministic transfer matrix, and S1 and S2 are the first-order and second-order transfer matrices,
respectively. Using the determination of S0 and S1 [11] and applying some transformations, we obtain

S0 =

(
−D−1

0LRD0LL D−1
0LR

D0RRD−1
0LRD0RR −D0RL D0RRD−1

0LR

)
,

S1 =

(
S1LL S1LR

S1RL S1RR

)
, S2 =

(
S2LL S2LR

S2RL S2RR

)
,

where

S1LL = D−1
0LRD1LL −D−1

0LRD1LRD−1
0LRD0LL, S1LR = −D−1

0LRD1LRD−1
0LR,

S1RL = D0RRD−1
0LRD1LL −D0RRD−1

0LRD1LRD−1
0LRD0LL −D1RL + D1RRD−1

0LRD0LL,

S1RR = −D0RRD−1
0LRD1LRD−1

0LR + D−1
0LR,

S2LL = −D−1
0LRD2LL −D−1

0LRD1LRD1LL −D−1
0LRD2LRS0LL,

S2LR = −D−1
0LRD1LRS1LR −D−1

0LRD2LRS0LL,

S2RL = D0RRD−1
0LR(D2LL + D1LRS1LL + D2LRS0LL) + D2RL + D1RRS1LL + D2RRS0LL,

S2RR = −D0RRD−1
0LR(D1LRS1LR + D2LRS0LR) + D1RRS1LR + D2RRS0LR.

Then we pose the stochastic eigenvalue problem

S̃ϕ̃ = µ̃ϕ̃,

where µ̃ = µ0 + µ1ε + µ2ε
2 are the eigenvalues associated to the eigenvector ϕ̃ = ϕ0 + ϕ1ε + ϕ2ε

2.
The polynomial chaos projection of the eigenvalue problem yields the equation for identifying the statistical

characteristics

(S0 + S1ε + S2ε
2)(ϕ0 + ϕ1ε + ϕ2ε

2) = (µ0 + µ1ε + µ2ε
2)(ϕ0 + ϕ1ε + ϕ2ε

2).

The deterministic and first-order eigenvalue problems were treated by Ichchou et al. [11]. Solving the deterministic
equation leads to a problem of calculating the mean of the eigenvalue µ0 and eigenvector ϕ0. In turn, solving the
first-order equation, one can calculate the standard deviation of the eigenvalue µ1 and eigenvector ϕ1.
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The deterministic equation is given as

S0ϕ0 = µ0ϕ0;

the first-order equation is

S0ϕ2 + S1ϕ1 + S2ϕ0 = µ0ϕ2 + µ1ϕ1 + µ2ϕ0;

finally, the second-order equation can be extracted in the following form:

S0ϕ2 + S1ϕ1 + S2ϕ0 = µ0ϕ2 + µ1ϕ1 + µ2ϕ0.

In order to extract the second-order perturbation of the eigenvalue µ2 and eigenvector ϕ2, we use the left
propagation constants. The vector ϕ̃T

i Jn can be chosen as the left eigenvector S̃ associated to the eigenvalue µ̃−1
i ,

where Jn =

(
0 In

−In 0

)
[14]. The left stochastic eigenvalue problem can be established as follows:

(ϕ̃T
i Jn)S̃ = µ̃−1

i (ϕ̃T
i Jn).

The polynomial chaos projection of the eigenvalue problem allows their statistics to be identified. In particular, the
left second-order equation is given as

ϕT
2 JnS0 + ϕT

1 JnS1 + ϕT
0 JnS2 = µ−1

0 ϕT
2 Jn + µ∗1ϕ

T
1 Jn + µ∗2ϕ

T
0 Jn,

where µ∗1 = −µ1/µ2
0 and µ∗2 = −µ2/µ2

0 + µ2
1/µ3

0.
After some analytical treatments, the statistics of the wave characteristics can be expressed via the second-

order perturbation of the propagation constants

µ2 = −[(S0 − µ0I)(ST
0 Jn − µ−1

0 Jn)Jnϕ0µ
−2
0 − ϕ0]+ ×

× [(S0 − µ0I)(ST
0 Jn − µ−1

0 Jn)(−Jnϕ0µ
2
1µ
−3
0 + ST

1 Jnϕ1 + ST
2 Jnϕ0 + µ1µ

−2
0 Jnϕ1)−

− S1ϕ1 − S2ϕ0 + µ1ϕ1]

and the second-order perturbation of the eigenvector

ϕ2 = [ST
0 Jn − µ−1

0 Jn]+[µ−1
2 Jnϕ0 − ST

1 Jnϕ1 − ST
2 Jnϕ0 − µ1µ

−2
0 Jnϕ1]

(the plus sign corresponds to the pseudo-inverse operator).
Let us consider the wave numbers statistics:

k̃ = (i/d) log µ̃,

which is of interest in numerous applications. Indeed, knowing the zeroth-, first-, and second-order perturbations of
the stochastic eigenvalue µ̃ and considering the wave number to be written as k̃ = k0 + k1ε + k2ε

2, we can express
the statistics of k̃. The mean of the wave number is given in [11] as k0 = (i/d) log µ0, and its first-order term is
k1 = (i/d)µ−1

0 µ1. After some mathematical treatments, we can extract the second-order term of the wave number:

k2 = (i/d)(µ−2
0 µ2

1 + µ−1
0 µ2).

2. NUMERICAL RESULTS AND DISCUSSION

In this Section, the main issue is the validation of the second-order SWFE finding by using the analytical
results and Monte Carlo (MC) simulations (5000 samples). The compression (longitudinal) and flexural waves are
considered.

2.1. Longitudinal Wave Case Study

We study the longitudinal wave case in order to validate the SWFE formulation for the traction–compression
mode. The waveguide is assumed to be a beam element with two nodes and one degree of freedom per node.
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The material is steel (ρ = 7800 kg/m3, ν = 0.3, and E = 2 · 1011 Pa). In numerical simulations, the level of
uncertainty is chosen approximately at 0.5% for the second-order perturbation. The mass and stiffness matrices for
the traction–compression mode are

Mtc =
ρsd

6

[
2 1

1 2

]
, Ktc =

Es

d

[
1 −1

−1 1

]
,

where E is Young’s modulus, s is the cross-sectional area, ρ is the mass density, and d is the length of the considered
element.

Let us consider now a random medium. It is then feasible in this basic case to compare the statistics of the
wave numbers and the propagation constants for an uncertain waveguide. Young’s modulus and mass density are
assumed to be random.

The random Young’s modulus Ẽ is modelled by the Gaussian variable: Ẽ = E0+E1ε+E2ε
2 (E0 = 2·1011 Pa,

E1 = 5 % ·E0 = 1010 Pa, and E2 = 0.5 % ·E0 = 109 Pa). The validation of the SWFE results is performed through
the analytical wave number expression derived for the longitudinal mode:

k̃tc = ω
√

ρ/E .

The polynomial chaos projection of the analytical wave number for the traction–compression mode is given as
k̃tc = k0tc+k1tcε+k2tcε

2, where k0tc = ω
√

ρ/E is the deterministic wave number and k1tc = −(1/2)ω
√

ρ E1E
−3/2
0 is

its first-order perturbation. The second-order perturbation can be presented in the following form (Fig. 2a):

k2tc =
1
2

ω
√

ρ
(3

4
E2

1E
−5/2
0 − E2E

−3/2
0

)
.

In the next paragraph, the random mass density ρ̃ is modeled by the Gaussian variables through a second-
order perturbation as

ρ̃ = ρ0 + ρ1ε + ρ2ε
2

(ρ0 = 7800 kg/m3, ρ1 = 5 % · ρ0 = 390 kg/m3, and ρ2 = 0.5 % · ρ0 = 39 kg/m3). The expression for the first-order
term of the analytical wavenumber is

k1tc =
ω

2
√

E
ρ
−1/2
0 ρ1,

and the second-order term (Fig. 2b) is

k2tc =
ω

2
√

E

(
ρ2ρ

−1/2
0 − 1

4
ρ2
1ρ
−3/2
0

)
.

2.2. Flexural Wave Case Study

Let us now consider a simple dispersive media. A two-node beam element is analyzed. The mass and stiffness
matrices of the beam are given simply as

Mfl =
ρsd

420


156 22d 54 −13d

22d 4d2 13d −3d

54 13d 156 −22d

−13d −3d −22d 4d2

 , Kfl =
EI

d3


12 6d −12 6d

6d 4d2 −6d 2d2

−12 −6d 12 −6d

6d 2d2 −6d 4d2

 ,

where EI is the bending stiffness.
The analytical wave number in the flexural mode is

k̃fl = (ρsω2/(EI))1/4.

The polynomial chaos projection of the analytical wave number for the flexural mode is written as k̃fl = k0fl +
k1flε + k2flε

2, where k0fl = (ρsω2/(E0I))1/4 is the analytical deterministic wave number for the flexural mode.
In the case of random media, if Young’s modulus is considered as a random parameter, the first-order term

of the analytical wave number for the flexural mode is

k1fl = −
(ρsω2

I

)1/4 1
4

E1E
−5/4
0 .
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Fig. 2. Second-order perturbation of the wave number versus frequency for the longitudinal mode
obtained by different methods: (a) E is the stochastic variable; (b) ρ is the stochastic variable;
SWFE results (1), analytical solution (2), and MC results (3).

The second-order term is written as follows (Fig. 3a):

k2fl =
(ρsω2

I

)1/4( 5
32

E2
1E

−9/4
0 − 1

4
E2E

−5/4
0

)
.

The analytical expression for the wave number obtained for the flexural mode is

k1fl =
(sω2

EI

)1/4 1
4

ρ
−3/4
0 ρ1.

After some analytical treatments, we can express the second-order term of the analytical wave number as
follows (Fig. 3b):

k2fl =
(sω2

EI

)1/4(
− 3

32
ρ
−7/4
0 ρ1 +

1
4

ρ
−3/4
0 ρ2

)
.

2.3. Results of Simulations with Allowance for the First-Order and Second-Order Perturbations

Let the length d be a stochastic parameter:

d̃ = d0 + d1ε + d2ε
2.

The polynomial chaos projection of the mass matrix for the longitudinal mode has the form

M̃ = M0 + M1ε + M2ε
2,
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Fig. 3. Second-order perturbation of the wave number versus frequency for the flexural mode
obtained by different methods: (a) E is the stochastic variable; (b) ρ is the stochastic variable
(notation the same as in Fig. 2).

where M0 =
ρsd0

6

[
2 1

1 2

]
is the deterministic mass matrix and M1 =

ρsd1

6

[
2 1

1 2

]
is its first-order perturbation.

The second-order perturbation of the mass matrix can be given as

M2 =
ρsd2

6

[
2 1

1 2

]
.

The polynomial chaos projection of the stiffness matrix for the longitudinal mode is

K̃ = K0 + K1ε + K2ε
2,

where K0 =
Es

d0

[
1 −1

−1 1

]
is the deterministic stiffness matrix and K1 = −Esd1

d2
0

[
1 −1

−1 1

]
is its first-order

perturbation. Then the second-order perturbation of the stiffness matrix can be given as

K2 = Es
(d2

1

d3
0

− d2

d2
0

)[ 1 −1

−1 1

]
.

In numerical simulations, the level of uncertainty is chosen to be approximately 10% for the first-order
perturbation and 0.5% for the second-order perturbation for studying the efficiency of the SWFE method in the
case of high perturbations around the mean of the random variable. The numerical simulations are performed for
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Fig. 4. First-order (a) and second-order perturbations of the wave number versus frequency for the
longitudinal mode (d is the stochastic variable) obtained by different methods: SWFE results (1)
and MC results (2).

the longitudinal mode under the assumption that the stochastic element length is d0 = 0.02 m, d1 = 10% d0 =
0.002 m, and d2 = 0.5%d0 = 0.0001 m.

It is seen in Fig. 4 that the first-order perturbation is insufficient in the case of high uncertainty. It is
remarkable that the SWFE and MC results are close to each other. In the case of high uncertainties, the second-
order perturbations should be taken into account.

CONCLUSIONS

In this paper, the stochastic wave finite element method is generalized for the analysis of uncertain periodic
waveguides with considering the second-order perturbation in the stochastic variables. Both the spectral and state
space formulations of the method are presented. The novelty and practical importance of the research consists in
the calculation of the second-order perturbation of eigenvalues and eigenvectors of the problem for the introduced
uncertainties in the physical and geometrical characteristics of the waveguide. The validation of method is based
on comparisons of numerical and analytical solutions for the longitudinal and flexural modes of wave propagation
through an elastic beam with random Young’s modulus and mass density. It is demonstrated that the second-order
perturbation should be taken into account at high uncertainties.
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