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Abstract: The aim of the present contribution is the determination of the thermoelastic tempera-

tures, stress, displacement, and strain in an infinite isotropic elastic body with a spherical cavity in

the context of the mechanism of the two-temperature generalized thermoelasticity theory (2TT). The

two-temperature Lord–Shulman (2TLS) model and two-temperature dual-phase-lag (2TDP) model

of thermoelasticity are combined into a unified formulation with unified parameters. The medium is

assumed to be initially quiescent. The basic equations are written in the form of a vector matrix dif-

ferential equation in the Laplace transform domain, which is then solved by the state-space approach.

The expressions for the conductive temperature and elongation are obtained at small times. The

numerical inversion of the transformed solutions is carried out by using the Fourier-series expansion

technique. A comparative study is performed for the thermoelastic stresses, conductive temperature,

thermodynamic temperature, displacement, and elongation computed by using the Lord–Shulman

and dual-phase-lag models.
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INTRODUCTION

Gurtin and William [1, 2] suggested that there are no a priori grounds for assuming that the second law

of thermodynamics for continuous bodies involves only a single temperature, i.e., it is more logical to assume a

second law in which the entropy contribution due to the heat conduction is governed by one temperature and that

due to heat supply by another. Chen and Gurtin [3] and Chen et al. [4, 5] formulated a theory of heat conduction

in deformable bodies, which depends on two distinct temperatures: conductive temperature and thermodynamic

temperature. For time-independent situations, the difference between these two temperatures is proportional to

the heat supply; in the absence of any heat supply, the two temperatures are identical [4]. For time-dependent

problems, however, and for wave propagation problems in particular, the two temperatures are in general different,

regardless of the presence of the heat supply. The key element that sets the two-temperature thermoelasticity (2TT)

apart from the classical theory of thermoelasticity (CTE) is the material parameter a ≥ 0, called the temperature

discrepancy [4]. Specifically, if a = 0, then φ = θ, and the field equations of the 2TT reduce to those of the CTE.

The linearized version of the two-temperature theory (2TT) was studied by many authors. Warren and

Chen [6] investigated wave propagation in the two-temperature theory of thermoelasticity. Lesan [7] established the

uniqueness and reciprocity theorems for the 2TT. Puri and Jordan [8] studied propagation of plane waves under

the 2TT. The existence, structural stability, and spatial behaviour of the solution in the 2TT was discussed by
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Quintanilla [9]. It should be pointed out that both the CTE and 2TT suffer from the so-called paradox of heat

conduction, i.e., the prediction that a thermal disturbance at some point in a body is felt instantly, but unequally,

throughout the body.

During the last five decades, nonclassical thermoelasticity theories involving hyperbolic-type heat transport

equations admitting finite speeds for thermal signals have been formulated. According to these theories, heat

propagation is to be viewed as a wave phenomenon rather than a diffusion phenomenon. Various approaches were

applied to obtain wave-type heat conduction equations by different researchers.

Lord and Shulman [10] formulated the generalized thermoelasticity theory by introducing one relaxation

time in Fourier’s law of the heat conduction equation and, thus, transforming the heat conduction equation into a

hyperbolic type. The uniqueness of the solution for this theory was proved under different conditions in [11–14].

Green and Lindsay [15] introduced one more theory, called the temperature-rate-dependent theory, which

involves two relaxation times. In this model, Fourier’s law of heat conduction is left unchanged, but the classical

energy equation and stress–strain temperature relation are modified.

Later on, Green and Naghdi [16] developed three models for generalized thermoelasticity of a homogeneous

isotropic material, which are labelled as models I, II, and III. If the respective theories are linearized, model I reduces

to the classical heat conduction theory (based on Fourier’s law). The linearized versions of models II and III permit

propagation of thermal waves at finite speeds. Model II, in particular, exhibits a feature that is not present in

the other established thermoelastic models as it does not sustain dissipation of thermal energy [17]. In this model,

the constitutive equations are derived by starting with the reduced energy equation and by including the thermal

displacement gradient among other constitutive variables. The third Green–Naghdi model [17] admits the dissipation

of energy. Problems concerning with the generalized thermoelasticity proposed by Green and Naghdi [17, 18] were

studied by Mallik and Kanoria [19, 20]. The next generalization of the thermoelasticity theory is known as the

dual-phase-lag thermoelasticity developed by Tzou [21]. Tzou considered microstructural effects into the delayed

response in time in the macroscopic formulation by taking into account that the increase in the lattice temperature

is delayed due to phonon–electron interactions at the macroscopic level. Tzou introduced two-phase-lags to both

the heat flux vector and the temperature gradient.

According to this model, the classical Fourier’s law q = −k∇T is replaced by the modified law

q(P, t + τq) = −k∇T (P, t+ τT ), where the temperature gradient ∇T at a point P of the material at the time

t+ τT corresponds to the heat flux vector q at the same point at the time t+ τq. Here k is the thermal conductivity

of the material. The delay time τT is interpreted as that caused by the microstructural interactions and is called

the phase-lag of the temperature gradient. The other delay time τq is interpreted as the relaxation time due to

the fast transient effects of thermal inertia and is called the phase-lag of the heat flux. The case with τq = τT = 0

corresponds to the classical Fourier’s law. If τq = τ and τT = 0, Tzou refers to the model as a single-phase-lag

model. Roychoudhuri [22] studied one-dimensional thermoelastic wave propagation in an elastic half-space in the

context of the dual-phase-lag model. Quintanilla [23–25] solved several problems on the basis of the dual-phase-lag

model. He also considered the exponential stability and the effect of the delay parameters [26, 27]. Prasad et al. [28]

studied propagation of a finite thermal wave in the context of the dual-phase-lag model.

Youssef [29] developed the theory of two-temperature generalized thermoelasticity based on the Lord–

Shulman model. Under the two-temperature theory, the dual-phase-lag model is modified as q(P, t + τq) =

−k∇φ(P, t + τT ), where φ is the conductive temperature. Mukhopadhyay and Kumar [30] studied propagation

of thermoelastic waves in an infinite medium with a cylindrical cavity. Variational and reciprocal principles were

considered by Kumar et al. [31]. The uniqueness and growth of solutions in the two-temperature generalized ther-

moelastic theories were investigated by Magane and Quintanilla [32]. Banik and Kanoria [33] studied thermoelastic

interactions in an infinite body with a spherical cavity under the 2TT. Thermoelastic interactions in an infinite

body under the 2TT in the context of the fractional heat equation were analyzed by Sur and Kanoria [34]. Mondal

et al. [35] studied dual-phase-lag thermoelastic interaction due to variable thermal conductivity.

In this work, we investigate the thermoelastic stresses, conductive temperature, and thermodynamic tem-

perature in an infinite isotropic elastic body having a spherical cavity by using the two-temperature generalized

thermoelasticity theory in the context of the 2TLS and 2TDP models. The generalized coupled thermoelasticity

theories are combined into a unified formulation with unified parameters. The governing equations of the two-

temperature generalized thermoelasticity theory are obtained in the Laplace transform domain, which are then
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solved by using the state-space approach [36]. The inversion of the transform solution is carried out numerically by

applying a method based on the Fourier-series expansion technique [37]. A complete and comprehensive analysis

of the results is performed for the 2TLS and 2TDP models. These results are also compared with those of the

one-temperature Lord–Shulman model [38].

1. MATHEMATICAL FORMULATION OF THE PROBLEM

We consider an isotropic infinite solid having a spherical cavity of radius R. A problem with spherical

symmetry is solved in a spherical coordinate system (r, ϑ, ϕ) with the origin of the center of the cavity. Therefore,

all the considered functions depend only on the radial coordinate r and time t. It follows that the displacement

vector u, thermodynamic temperature θ, and conductive temperature φ can be presented as

u = (u(r, t), 0, 0), θ = θ(r, t), φ = φ(r, t).

The strain tensor components are

err =
∂u

∂r
, eϑϑ = eϕϕ =

u

r
.

The cubical dilatation is given by

e =
∂u

∂r
+ 2

u

r
=

1

r2
∂

∂r
(r2u). (1.1)

The stress–strain and stress–temperature relations for the present problem are

σrr = 2μ
∂u

∂r
+ λe − γθ; (1.2)

σϑϑ = σϕϕ = 2μ
u

r
+ λe − γθ. (1.3)

In the context of the two-temperature generalized thermoelasticity based on the Lord–Shulman and dual-phase-lag

theories, the equation of motion in the absence of body forces and the heat conduction equation for a linearly

isotropic generalized thermoelastic solid in the absence of heat sources in the body are, respectively,

(λ+ 2μ)
∂e

∂r
− γ

∂θ

∂r
= ρ

∂2u

∂t2
; (1.4)

k
(
t1 + t2

∂

∂t
+ t3

∂2

∂t2

)
∇2φ =

(
1 + t4

∂

∂t
+ t5

∂2

∂t2

)
(ρcE θ̇ + γT0ė), (1.5)

where ρ is the density, λ and μ are the Lamé parameters, γ = (3λ + 2μ)αt (αt is the coefficient of linear thermal

expansion), T0 is the reference temperature, cE is the specific heat at constant strain, ∇2 is the Laplacian given in

our case by

∇2 =
1

r2
∂

∂r

(
r2

∂

∂r

)
,

ti are unified parameters corresponding to a particular model (t1 = 1, t2 = 0, t3 = 0, t4 = τ0, and t5 = 0 for the

2TLS model; t1 = 1, t2 = τT , t3 = τ2T /2, t4 = τq, and t5 = τ2q /2 for the 2TDP model), and τ0 is the relaxation time.

The relation between the conductive temperature φ and the thermodynamic temperature θ is

φ− θ = a∇2φ, (1.6)

where a > 0 is the two-temperature parameter. Introducing the dimensionless variables

r′ =
r

κ

(λ+ 2μ

ρ

)1/2
, u′ =

u

κ

(λ+ 2μ

ρ

)1/2
, t′ =

t

κ

λ+ 2μ

ρ
,

τ0 =
τ0
κ

λ+ 2μ

ρ
, θ′ =

θ

T0
, φ′ =

φ

T0
, σ′ =

σ

2μ+ λ
,
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we can write Eqs. (1.2)–(1.6) in the form

σrr = β2e+ (1− β2)
∂u

∂r
− αθ; (1.7)

σϑϑ = σϕϕ = (1− β2)
u

r
+ β2e− αθ; (1.8)

∂e

∂r
− α

∂θ

∂r
=

∂2u

∂t2
; (1.9)

(
t1 + t2G

∂

∂t
+ t3G

2 ∂2

∂t2

)
∇2φ =

(
1 + t4G

∂

∂t
+ t5G

2 ∂2

∂t2

)
(θ̇ + εė); (1.10)

φ− θ = ω∇2φ, (1.11)

where t1 = 1, t2 = 0, t3 = 0, t4 = τ0/G, and t5 = 0 for the 2TLS model, t1 = 1, t2 = τT /G, t3 = τ2T /(2G
2),

t4 = τq/G, and t5 = τ2q /(2G
2) for the 2TDP model, G = (λ + 2μ)/(ρκ), ε = γκ/k, α = γT0/(λ + 2μ), ω =

a(λ+ 2μ)/(ρκ2), and β2 = λ/(λ+ 2μ); the primes at the dimensionless variables are omitted.

Equation (1.9) can be expressed in the form

∂2e

∂t2
= ∇2e− α∇2θ. (1.12)

The initial and regularity conditions for the present problem are

t = 0, r � R: u = θ = φ = 0, t = 0:
∂u

∂t
=

∂θ

∂t
= 0,

t = 0, r → ∞: u = θ = φ = 0.

Equations (1.10)–(1.12) are subjected to the thermal boundary condition (the internal surface r = R is

subjected to the thermal shock)

φ(R, t) = φR = F (t), (1.13)

where

F (t) =

{
φ0, t > 0,

0, t < 0,

and to the mechanical boundary condition (there is no cubical dilatation on the internal surface r = R)

e(R, t) = eR = 0. (1.14)

2. METHOD OF THE SOLUTION

Applying the Laplace transform

f̄(s) =

∞∫
0

f(t) e−st dt, Re(s) > 0

to Eqs. (1.7)–(1.11), we obtain

σ̄rr = β2ē+ (1− β2)
∂ū

∂r
− αθ̄; (2.1)

σ̄ϕϕ = σ̄ψψ = (1 − β2)
ū

r
+ β2ē− αθ̄;

∇2ē = s2ē+ α∇2θ̄; (2.2)
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(t1 + t2Gs+ t3G
2s2)∇2φ̄ = (1 + t4Gs+ t5G

2s2)s(θ̄ + εē); (2.3)

φ̄− θ̄ = ω∇2φ̄. (2.4)

The boundary conditions (1.13) and (1.14) in the transformed domain take the form

φ̄(R, s) = F̄ (s) =
φ0

s
; (2.5)

ē(R, s) = ē = 0. (2.6)

It follows from Eqs. (2.3) and (2.4) that

θ̄ =
1

1 + a3ω
φ̄− a3εω

1 + a3ω
ē, (2.7)

where

a3 =
s(1 + t4Gs+ t5G

2s2)

t1 + t2Gs+ t3G2s2
.

Substituting θ̄ from Eq. (2.7) into Eq. (2.3), we obtain

∇2φ̄ = L1φ̄+ L2ē. (2.8)

Using Eqs. (2.8) and (2.2), we find

∇2ē = M1φ̄+M2ē, (2.9)

where

L1 =
a3

1 + a3ω
, L2 =

a3ε

1 + a3ω
,

M1 =
αa3

(1 + a3ω)[1 + a3ω(1 + αε)]
, M2 =

s2(1 + a3ω)
2 + αa3ε

(1 + a3ω)[1 + a3ω(1 + αε)]
.

The differential equations (2.8) and (2.9) can be written in the vector–matrix form as

∇2V̄ (r, s) = A(s)V̄ (r, s), (2.10)

where

V̄ (r, s) =

(
φ̄(r, s)

ē(r, s)

)
, A(s) =

(
L1 L2

M1 M2

)
.

3. STATE-SPACE APPROACH

The formal solution of Eq. (2.10) can be written in the form

V̄ (r, s) =
R

r
e−

√
A(s)(r−R) V̄ (R, s), (3.1)

where

V̄ (R, s) =

(
φ̄(R, s)

ē(R, s)

)
.

The characteristic equation of the matrix A(s) takes the form

k2 − k(L1 +M2) + (L1M2 − L2M1) = 0. (3.2)

The roots of Eq. (3.2) satisfy the following relations:

k1 + k2 = L1 +M2, k1k2 = L1M2 − L2M1.
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The spectral decomposition of the matrix A(s) is

A(s) = k1E1 + k2E2,

where E1 and E2 are called the projectors of A(s) and satisfy the conditions

E1 + E2 = I, E1E2 = Z, E2
i = Ei, i = 1, 2

(I is the identity matrix and Z is the zero matrix). Therefore, we obtain√
A(s) =

√
k1 E1 +

√
k2 E2,

where

E1 =
1

k1 − k2

(
L1 − k2 L2

M1 M2 − k2

)
, E2 =

1

k1 − k2

(
k1 − L1 −L2

−M1 k1 −M2

)
.

Thus, we have

B(s) =
√
A(s) =

1√
k1 +

√
k2

(
L1 +

√
k1k2 L2

M1 M2 +
√
k1k2

)
.

Now solution (3.1) can be written as

V̄ (r, s) =
R

r
e−B(s)(r−R) V̄ (R, s). (3.3)

To find the form of the matrix exp [−B(s)(r−R)], we now apply the Cayley–Hamilton theorem. The characteristic

equation of the matrix B(s)

m2 −m(
√
k1 +

√
k2 ) +

√
k1
√
k2 = 0

has the roots

m1 =
√
k1 , m2 =

√
k2.

The Taylor series expansion for the matrix exponential in Eq. (3.3) has the following form [39]:

e−B(s)(r−R) =
∞∑
n=0

(−B(s)(r −R))n

n
. (3.4)

We can express the matrix B2 and the higher orders of the matrix B in terms of the matrix B and the second-order

unit matrix I [39]. Then the infinite series in Eq. (3.4) can be presented as

e−B(s)(r−R) = b0(r, s)I + b1(r, s)B(s),

where b0 and b1 are coefficients depending on r and s.

The characteristic roots m1 and m2 of the matrix B must satisfy Eq. (3.4). Therefore, we have

e−P1(r−R) = b0 + b1P1; (3.5)

e−P2(r−R) = b0 + b1P2. (3.6)

Solving Eqs. (3.5) and (3.6), we find the coefficients b0 and b1:

b0 =
P1 e

−P2(r−R) − P2 e
−P1(r−R)

P1 − P2
, b1 =

e−P1(r−R) − e−P2(r−R)

P1 − P2
.

Hence, Eq. (3.4) can be written as

e−B(s)(r−R) = H(r, s) = [hij(r, s)], i, j = 1, 2, (3.7)

where

h11 =
(P 2

1 − l) e−P2(r−R) − (P 2
2 − l) e−P1(r−R)

P 2
1 − P 2

2

, h12 =
εl e−P1(r−R) − e−P2(r−R)

P 2
1 − P 2

2

,
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h21 =
M2 e

−P1(r−R) − e−P2(r−R)

P 2
1 − P 2

2

, h22 =
(P 2

1 −M1) e
−P2(r−R) − (P 2

2 −M1) e
−P1(r−R)

P 2
1 − P 2

2

.

Hence, from Eqs. (3.3) and (3.7), we obtain

V̄ (r, s) =
R

r
[hij(r, s)]V̄ (R, s). (3.8)

Applying the Laplace transform to Eqs. (1.3) and (1.4), we obtain

φ̄(R, s) = F̄ (s) =
φ0

s
; (3.9)

ē(R, s) = ē = 0. (3.10)

Hence, using the boundary conditions (2.5) and (2.6), we find the solutions for φ̄ and ē from Eq. (3.8):

φ̄ =
RF̄ (s)

r(P 2
1 − P 2

2 )
[(P 2

1 − L1) e
−P2(r−R) − (P 2

2 − L1) e
−P1(r−R)]; (3.11)

ē =
RF̄ (s)M1

r(P 2
1 − P 2

2 )
[e−P1(r−R) − e−P2(r−R)]. (3.12)

In view of Eqs. (3.11) and (3.12), Eq. (2.8) yields

θ̄ =
RF̄ (s)

r(1 + a3ω)(P 2
1 − P 2

2 )
[(P 2

1 − L1) e
−P2(r−R) − (P 2

2 − L1) e
−P1(r−R)]. (3.13)

Applying the Laplace transform to Eq. (1.1), using Eq. (3.10), and then integrating, we find the radial displacement

ū =
RF̄ (s)M1

r2(P 2
1 − P 2

2 )

(P2r + 1

P 2
2

e−P2(r−R) − P1r + 1

P 2
1

e−P1(r−R)
)
. (3.14)

The stress component σrr in the Laplace transform domain is obtained from Eqs. (2.1) and (3.12)–(3.14):

σ̄rr =
RF̄ (s)

r3P 2
1 P

2
2 (P

2
1 − P 2

2 )

[
P 2
2 e−P1(r−R)

(
β2M1r

2P 2
1 + 2(1− β2)M1(P1r + 1) +M1r

2(1− β2) +
α(P 2

2 − L1)

1 + a3ω

)

− P 2
1 e−P2(r−R)

(
β2M1r

2P 2
2 + 2(1− β2)M1(P2r + 1) +M1r

2(1− β2) +
α(P 2

1 − L1)

1 + a3ω

)]
. (3.15)

Equations (3.11)–(3.15) complete our solution in the Laplace transform domain.

4. DERIVATION AND ANALYSIS OF SMALL TIME SOLUTIONS

Under dual-phase-lag heat conduction, Eqs. (2.2)–(2.4) take the form

N∇2φ̄ = Mθ̄ + εMē, φ̄− θ̄ = ω∇2φ, ∇2ē = s2ē+ α∇2θ̄,

where M = s(1 + τqs+ τ2q s
2/2) and N = 1 + τT s.

This leads to the following equation for φ̄ and ē:

[(N +Mω + αεMω)∇4 − (s2N +M + αεM + s2Mω)∇2 + s2M ](φ̄, ē) = 0.

The biquadratic equation

(N +Mω + αεMω)P 4 − (s2N +M + αεM + s2Mω)P 2 + s2M = 0

has the roots
P 2
1,2 =

1

2(N +Mω + αεMω)

(
s2(N +Mω) +M(1 + αε)

±
√
[s2(N +Mω) +M(1 + αε)]2 − 4Ms2(N +Mω + αεMω)

)
. (4.1)

Applying the inverse Laplace transform to Eqs. (3.11)–(3.15), we find φ, e, θ, u, and σrr.
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The roots P1,2 depend on the Laplace transform parameter s; for this reason, it is difficult to determine the

inverse transform. As the second sound effects (propagation of thermal waves with a finite speed) are short-lived,

it is sufficient to derive and analyze the solutions for small times t. This is done by taking the Laplace parameter s

to be large.

Thus, we obtain the following results for large values of s:

P1 � s

v1
+

1

2

λ2

λ1

1

s
+

1

2v1

(λ3

λ1
− 1

4

λ2
2

λ2
1

)1
s

if the plus sign is taken in Eq. (4.1) and

P2 � s

v2
+

1

2

μ2

μ1

1

s
+

1

2v2

(μ3

μ1
− 1

4

μ2
2

μ2
1

)1
s

if the minus sign is taken in Eq. (4.1). Here we have

λ1 = 2A, λ2 = B +
B

A
− 4A

τT
, λ3 = C +

C

A
− 4A[τT + ω(1 + αε)]

τ2q ω(1 + αε)
+

8A

τ2q
,

μ1 = τq, μ2 = −2, μ3 =
(
C − C

A
−AF

)
τq − 2

τqω

τT + ω(1 + αε)

1 + αε
,

v1 =
(ω(1 + αε)τ2q

λ1

)1/2
, v2 =

(2ω(1 + αε)τ2q
λ1

)1/2
,

A =
ωτ2q
2

, B = ωτq, C = ω +
1

2
τ2q (1 + αε), F = −ωτ4q (1 + αε).

Thus, for large values of s, we have

P1 � s

v1
+

1

2

λ2

λ1

1

v1
, P2 � s

v2
+

1

2

μ2

μ1

1

v2
.

After simplifications, we obtain the following relations for large values of s:

M1

P 2
2 − P 2

1

� 1

s5
δ1
L0

+
1

s6
δ2 + δ1M0

L0
,

P 2
1 − L1

s(P 2
2 − P 2

1 )
� 1

L0

(
ω +

1

v21

)1
s
+

1

s2

[
− 1

L0
− M0

L0

(
ω +

1

v21

)]
,

P 2
2 − L1

s(P 2
2 − P 2

1 )
� 1

L0

(
ω +

1

v22

)1
s
+

1

s2

[
− 1

L0
− M0

L0

(
ω +

1

v22

)]
.

In these relations, we have

L0 =
1

v22
− 1

v21
, M0 =

μ2

μ1v22
− λ2

λ1v21
,

δ1 =
2α

ω2τ2q (1 + αε)
, δ2 = δ1

(
τT +

2

τq
− 2τq

ω
− 2τq

ω(1 + αε)

)
.

Finally, we obtain the following solutions for the conductive temperature φ and strain e fields in the Laplace

transform domain for large values of s:

φ̄(ξ, s) � Rφ0

({ 1

L0

(
ω +

1

v22

)1
s
−
[ 1

L0
+

M0

L0

(
ω +

1

v22

)] 1
s2

}
exp

(
−
( s

v1
+

λ2

2λ1v1

)
ξ
)

−
{ 1

L0

(
ω +

1

v21

)1
s
−
[ 1

L0
+

M0

L0

(
ω +

1

v21

)] 1
s2

}
exp

(
−
( s

v2
+

μ2

2μ1v2

)
ξ
))

,
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ē(ξ, s) � Rφ0

[( δ1
L0

1

s5
+

1

s6
δ2 + δ1M0

L0

)
exp

(
−
( s

v2
+

μ2

2μ1v2

)
ξ
)

−
( δ1
L0

1

s5
+

1

s6
δ2 + δ1M0

L0

)
exp

(
−
( s

v1
+

λ2

2λ1v1

)
ξ
)]

(ξ = r −R). Finally, applying the inverse Laplace transforms, we obtain

φ(ξ, t) � Rφ0

(
exp

(
− λ2

2λ1v1
ξ
){ 1

L0

(
ω +

1

v22

)
−
(
t− ξ

v1

)[ 1

L0
+

M0

L0

(
ω +

1

v22

)]}
H
(
t− ξ

v1

)

− exp
(
− μ2

2μ1v2
ξ
){ 1

L0

(
ω +

1

v21

)
−
(
t− ξ

v2

)[ 1

L0
+

M0

L0

(
ω +

1

v21

)]}
H
(
t− ξ

v2

))
; (4.2)

e(ξ, t) =
R

r
φ0

{
exp

(
− μ2

2μ1v2
ξ
)[ δ1

L0

1

24

(
t− ξ

v2

)4
+

1

120

(
t− ξ

v2

)5 δ2 + δ1M0

L0

]
H
(
t− ξ

v2

)

− exp
(
− λ2

2λ1v1
ξ
)[ δ1

L0

1

24

(
t− ξ

v1

)4
+

1

120

(
t− ξ

v1

)5 δ2 + δ1M0

L0

]
H
(
t− ξ

v1

)}
. (4.3)

The small time solutions (4.2) and(4.3) for the conductive temperature and elongation reveal the existence of

two waves. The expressions for φ and e are composed of two parts, and each part corresponds to a wave propagating

with a finite speed. The speed of the wave corresponding to the first part is v1 and that corresponding to the second

part is v2.

By means of direct inspection of solutions (4.2) and (4.3), we find that the elongation e is continuous, whereas

the temperature φ is discontinuous at the wave fronts. The finite jumps experienced by the temperature at the

wave fronts are found as

[φ]
∣∣∣
ξ=tv1

= Rφ0 exp
(
− λ2

2λ1v1
ξ
) 1

L0

(
ω +

1

v22

)
, [φ]

∣∣∣
ξ=tv2

= −Rφ0 exp
(
− μ2

2μ1v2
ξ
) 1

L0

(
ω +

1

v21

)
.

The finite jumps are not constant, but they decay exponentially with distance from the cavity boundary.

The velocity v2 corresponds to the modified speed of thermal signals, and v1 corresponds to the modified elastic

dilatational wave speed. As v1 < v2, the faster wave is a predominantly modified Tzou wave (T-wave) and the

slower one is a predominantly modified elastic wave (E-wave).

5. NUMERICAL INVERSION OF THE LAPLACE TRANSFORM

Let us find the inverse Laplace transform numerically. Let f̄(r, s) be the Laplace transform of a func-

tion f(r, t). Then, the inversion formula for the Laplace transform can be written as

f(r, t) =
1

2πi

d+i∞∫
d−i∞

est f̄(r, s) ds, (5.1)

where d is an arbitrary real number greater than the real part of all the singularities of the function f̄(r, s).

Assuming that s = d+ iw in Eq. (5.1), we obtain

f(r, t) =
edt

2π

∞∫
−∞

eitw f(r, d+ iw) dw.

Expanding the function h(r, t) = e−dt f(r, t) into the Fourier series in the interval [0, 2T ], we obtain the approximate

formula [37]

f(r, t) = f∞(r, t) + ED,
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where

f∞(r, t) =
1

2
c0 +

∞∑
k=1

ck, 0 � t � 2T ; (5.2)

ck =
edt

T
eikπt/T f̄

(
r, d+

ikπt

T

)
.

The discretization error ED can be made arbitrary small by choosing d large enough [37]. Leaving a finite number

of terms in series (5.2), we obtain the approximate value for the function f(r, t):

fN (r, t) =
1

2
c0 +

N∑
k=1

ck, 0 � t � 2T. (5.3)

Using Eq. (5.3), we have to take into account a truncation error, which must be added to the discretization error

to produce the total approximation error.

Two methods are used to reduce the total error: the Korrecktur method to reduce the discretization error

and the ε-algorithm to accelerate the convergence [37].

The function f(r, t) is evaluated in the Korrecktur method by the formula

f(r, t) = f∞(r, t) − e−2dT f∞(r, 2T + t) + E′
D,

where the discretization error is |E′
D| � |ED|. Thus, the approximate value of the function f(r, t) is

fNK(r, t) = fN (r, t)− e−2dT fN ′(r, 2T + t), (5.4)

where N ′ < N is an integer number.

We now describe the ε-algorithm that is used to accelerate the convergence of the series in Eq. (5.3). Let

N = 2q + 1 (q is a natural number) and let sm =
m∑
k=1

ck be a sequence of the partial sums of series in (5.3). We

define the ε-sequence by

ε0,m = 0, ε1,m = sm, εp+1,m = εp−1,m+1 +
1

εp,m+1 − εp,m
, p = 1, 2, 3, . . . .

The sequence ε1,1, ε3,1, ε5,1, . . . , εN,1 [37] converges to f(r, t) + ED − c0/2 faster than the sequence of the partial

sums sm (m = 1, 2, 3, . . .).

The actual procedure used to invert the Laplace transform consists of using Eq. (5.4) together with the

ε-algorithm. The values of the constants d and T are chosen according to the criterion outlined in [37].

6. NUMERICAL RESULTS AND DISCUSSION

To obtain the solution for the thermal stresses, conductive temperature, and thermodynamic temperature in

the space-time domain, we have to apply the Laplace inversion to Eqs. (3.9)–(3.15). This has been done numerically

by using the above-described procedure [37]. The numerical code is written in the Fortran-77 programming language.

For the purpose of illustration, we consider a copper-like material with the material constants k =

386 N/(K · s), αT = 1.78·10−5 K−1, cE = 383.1 m2/K, η = 8886.73 m/s2, μ = 3.86·1010 N/m2, λ = 7.76·1010 N/m2,

ρ = 8954 kg/m3, τT = 0.015 s, τ0 = τq = 0.02 s, T0 = 293 K, ε = 0.0168, α = 0.0104, and F0 = 1, which satisfies

the stability condition of the dual-phase-lag model τT /τq > 1/2.

Figure 1 shows the effect of the radial coordinate on the conductive temperature φ, thermodynamic temper-

ature θ, radial stress σrr, displacement u, and strain e for t = 0.2 for the Lord–Shulman and dual-phase-lag models,

where ω = 0 and 0.1 correspond to the one-temperature and two-temperature theories, respectively. It is seen

that the conductive temperature φ reaches the maximum value at the internal surface r = R, which satisfies our

theoretical boundary condition, and then it gradually decays and asymptotically tends to zero far from the center

of the spherical cavity. The magnitude of the conductive temperature is larger for the Lord–Shulman model than

for the dual-phase-lag model. The rate of decay of the conductive temperature is faster for the one-temperature

theory than that for the two-temperature theory.
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Fig. 1. Effect of the radial coordinate on the conductive temperature (a), thermodynamic tem-
perature (b), radial stress (c), displacement (d), and strain (e) for t = 0.2 and ω = 0 and
0.1: one-temperature Lord–Shulman model of thermoelasticity (1); two-temperature Lord–Shulman
model of thermoelasticity (2); one-temperature dual-phase-lag model of thermoelasticity (3); two-
temperature dual-phase-lag model of thermoelasticity (4).
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Fig. 2. Conductive temperature versus time predicted by the two-temperature Lord–Shulman ther-
moelasticity model (1) and two-temperature dual-phase-lag model (2) for r = 1.2 and ω = 0.1.

The temperature θ attains its maximum value at the internal surface r = 1 for both one-temperature and

two-temperature models, then it asymptotically tends to zero as r increases. The magnitude for the Lord–Shulman

model is larger than that for the dual-phase-lag model.

The radial stress σrr predicted by both models is compressive near the internal surface r = 1, and the

maximum magnitudes are also attained there. Also, the magnitude of the thermal stress decays gradually as r

increases and finally tends to zero far from the cavity. Also, the magnitude of the thermal stress is larger for the

Lord–Shulman model than that for the dual-phase-lag model.

The displacement u predicted by the Lord–Shulman model is also larger than that for the dual-phase-lag

model. As r increases, the magnitude of u decays and asymptotically tends to zero far from the cavity.

The elongation e is equal to zero at the internal surface r = 1 (see Fig. 1e), which agrees with our mechanical

boundary condition. The peak value of the elongation is reached at r � 1.2. The peak value predicted by the Lord–

Shulman model is greater than that of the dual-phase-lag model for both ω = 0 and ω = 0.1.

Figure 2 shows the conductive temperature φ versus the time t for r = 1.2 and ω = 0.1. It is observed that

the conductive temperature increases at first with increasing t and then reaches a steady state.

CONCLUSIONS

The problem of investigating the conductive temperature, thermodynamic temperature, thermal stress,

displacement, and elongation in an infinite homogenous isotropic elastic spherical shell is considered in the light of

two-temperature generalized thermoelasticity in the context of the dual-phase-lag heat conduction equation. The

Laplace transform is used to write the basic equations in the form of a vector–matrix differential equation, which is

then solved by the state-space approach. The numerical inversion of the Laplace transform is performed by using

the Fourier’s series expansion technique [37]. The analysis of the results permits some concluding remarks.

In some practical relevant problems, particularly heat transfer problems involving very small time intervals

and very high heat fluxes, the hyperbolic equations give significantly different results than the parabolic equations.

According to this phenomenon, the lagging behavior in heat conduction in solids should not be ignored, particu-

larly when the elapsed times during the transient process are very small (about 10−7 s) or the heat flux is very

high. Whenever such a physical situation arises, it is convenient to use the dual-phase lag model of generalized

thermoelasticity.

When very high heat fluxes arise in the body for a very small time interval (about 10−7 s), then the

heat conduction in the deformable solid depends on two distinct temperatures: conductive temperature φ and

thermodynamic temperature θ. As the thermodynamic temperature θ is a function of the conductive temperature

and its first two spatial gradients, i.e., θ = θ̂(φ,∇φ, a2φ) [3], it is convenient to choose the two-temperature

theory rather than the one-temperature theory. For time-independent situations, the difference between these
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two temperatures is proportional to the heat supply; in the absence of any heat supply, the two temperatures

are identical. In this case, the solutions predicted by the two-temperature generalized thermoelasticity theory are

continuous, which seems to be physically plausible. Thus, the two-temperature thermoelasticity model is more

realistic than the one-temperature model.

The small time solutions for the conductive temperature φ and strain e reveal the existence of two waves

propagating with a finite speed.

The expressions for φ and e are composed of two parts, each corresponding to a wave propagating with

a finite speed. For the conductive temperature, the speed of the wave corresponding to the first part is v1 and

that corresponding to the second part is v2. For the strain e, the speed of the wave corresponding to the first

part is v2 and that corresponding to the second part is v1. Both waves decay exponentially with distance. The

temperature φ and strain e are identically equal to zero for x > v2t. This implies that, at a given instant of

time te, the points of the solid beyond the faster wave front (x = v2t
e) do not experience any disturbances. This

observation confirms that the two-temperature dual-phase-lag theory is also a wave thermoelasticity theory, like

other generalized thermoelasticity theories. The domain 0 < x < v2t
e is the domain of influence of the disturbance

at a given time, contrary to the result that this domain extends and the effects occur instantaneously everywhere

in the solid, as predicted by the classical thermoelasticity theory. The results obtained in this work agree with the

results of [38].

We are grateful to Prof. S. C. Bose of the Department of Applied Mathematics, University of Calcutta for

his valuable suggestions and guidance in preparation of the paper.
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