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Abstract: This paper presents an experimental and theoretical study of the influence of a tensile

load on the relaxation of residual stresses in a hardened cylindrical specimen of ZhS6KP alloy under

creep conditions at 800◦C. An experimental study was conducted to investigate the distribution of

the axial residual stress tensor component across the thickness of the hardened layer after hardening

by air shot blasting using microbeads and after creep loading for 50 and 200 h under a tensile load

of 150 and 250 MPa. A detailed theoretical analysis of the problem was performed. In all loading

regimes, the calculated and experimental values of the residual stresses were found to be in good

agreement. It was shown that at low tensile load, the relaxation rate decreased in comparison with

the case of thermal exposure in the absence of a tensile load and, with increasing load intensity, it

increased.

Keywords: cylindrical specimen surface plastic strain, residual stress, tensile load, creep, relax-

ation.
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INTRODUCTION

It is known that at normal and medium temperatures, surface plastic deformation has a positive effect on the

durability of machine parts [1–6]. Furthermore, an increase in the fatigue resistance is due mainly to the presence of

compressive residual stresses in the surface layer. A more complicated situation arises in ascertaining the feasibility

of using different methods of surface plastic deformation of parts operating at high temperatures (e.g., components

of gas turbine engines). Operating conditions have a significant effect on the state of the hardened layer: due to creep

under the action of loads and temperatures, there is a change in the residual stresses in time during rheological

deformation of the structure itself. Since the effectiveness of surface plastic deformation methods is determined

by the resistance of residual stresses to temperature-power loading, the study of residual stress relaxation is an

important theoretical and applied problem. Furthermore, in practice, the rate (time) of complete relaxation can be

used to diagnose the expiration of the service life of, e.g., gas turbine engine blades [7].

In [6, 8], an approximate method for solving the boundary-value problem of the relaxation of residual

stresses in a stretched hardened cylindrical specimen is proposed based on decomposition of the structure into a

thin hardened layer and its body. It was assumed that the hardened layer is glued onto the surface of the cylinder

and is deformed together with it in a hard loading regime for given deformation values on the cylinder surface.
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Fig. 1. Experimental specimen.

In [9], a direct numerical method of solving this problem was proposed and verified experimentally for cylindrical

specimens of EI691 alloy at 400◦C under thermal exposure without load. Experimental studies have been performed

under thermal exposure conditions [2, 9], and the effect of tensile loads on the relaxation of residual stresses under

creep conditions practically has not been carried out.

This paper presents an experimental and theoretical study of the influence of tensile stresses on the relaxation

of residual stresses in cylindrical specimens of ZhS6KP alloy under conditions of high temperature creep at a

temperature of 800◦C.

1. METHOD OF EXPERIMENTAL STUDY

This section provides the characteristics of the test specimens and the experimental procedure.

1.1. Test Specimens

The specimens of ZhS6KP alloy had the shape and dimensions shown in Fig. 1 (M12 is the typical size of

the thread for attaching the specimen in the test machine). The selected shape allowed determining the residual

stresses after hardening and exposure at elevated temperatures and performing tensile creep tests. Blanks for the

specimens were cut from a rod and heated at a temperature of 1220◦C in for 4 h with subsequent cooling in air,

aging at a temperature of 950◦C for 2 h, and cooling in air. After that, the initial and final turning of the working

part of the cylindrical portion of the specimen was conducted. The grinding allowance was 0.4 mm, and the surface

roughness was Ra = 0.32–0.63 μm. The allowance for polishing was 0.06 mm. In polishing, 0.03 mm was left for

final finishing. After polishing, the specimens were heated at a temperature of 950◦C for 4 h and then cooled in

air. The last operation was final polishing, in which the roughness was maintained at a level Ra = 0.32 μm. This

technology rules out the occurrence of residual stresses.

1.2. Hardening of Specimens

Residual stresses were induced in the surface layer of the specimens using the air shot blasting of the surface

with 160–200 μm diameter microbeads made of SH-15 material at an air pressure of 0.3 MPa, a flight speed of

microbeads of 76 m/s, and a hardening time of 45 s.

1.3. Determining Residual Stresses after Treatment with Microbeads

Residual stresses were determined by the method of rings and strips proposed in [1, 10, 11]. This method

was further developed in [2, 12]. In the method, the hardened specimen is bored out to make bushings, which

are then cut along the generatrix to produce rings and strips. In the cut strips, the deflection is measured, and

in the cut rings, the change in the diameter. Next, the outer layers of the rings and strips are removed (etched)

by electrochemical polishing and the changes in the diameter of the rings and the deflections of the strips are

simultaneously measured. The measured values are used to evaluate the circumferential and axial residual stresses

using the procedure described in [2, 10, 12 ].
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Fig. 2. Calculated (curves) and experimental (points) diagrams of
residual stresses σres

z (h) in a cylindrical specimen of radius a = 3.76 mm
under thermal exposure (T = 800◦Cand N = 0): (1) after hardening
at time t = 0− 0; (2) after thermal loading at time t = 0+ 0; (3) after
thermal loading at time t = 50 − 0 h; (4) after thermal unloading at
the time t = 50 + 0 h.

The measured residual stresses after the treatment with microbeads averaged over three specimens are

presented in Fig. 2 (h = a− r is the thickness of the hardened layer, a is the radius of the specimen, and r is the

radial coordinate).

1.4. Determining Residual Stresses after Creep Loading at Elevated Temperatures

For the experimental study of the relaxation of residual stresses resulting from creep in specimens hardened

with microbeads at a temperature of 800◦C these specimens were allowed to stay without load (N = 0) and under

tensile axial distributed loads N = 150 and 250 MPa for 50 and 200 h in a high temperature furnace. After 50 h,

we determined the distribution of residual axial stresses across the thickness of the hardened layer and, at time

t = 200 h, the maximum absolute values of compressive stresses on the specimen surface. It should be noted that

the determination of residual stresses after keeping the specimens at a temperature of 800◦C was carried out after

thermal unloading (cooling to room temperature). In Fig. 3, points show the experimental distribution of the axial

component of the stress tensor σz across the thickness of the hardened layer after creep for 50 h under tensile loads

N = 150 and 250 MPa. The following are the maximum absolute values of the experimental residual stress σz on

the surface of a cylindrical specimen of radius a = 3.76 mm:

σzmax = −370 MPa at an exposure time te = 50 h (N = 150 MPa);

σzmax = −470 MPa at te = 50 h (N = 250 MPa);

σzmax = −280 MPa at te = 200 h (N = 150 MPa);

σzmax = −300 MPa at te = 200 h (N = 250 MPa).

From the analysis of the data shown in Figs. 2 and 3, it follows that under a constant load, the stress relaxation

of residual stresses is slowing. This result appears to be due to the fact that after hardening, the self-equilibrated

field of residual stresses is superimposed by the stress caused by the applied load. However, unambiguous conclusions

can be drawn only after a comprehensive theoretical analysis. The aim of this study is to investigate the relaxation

process using the method developed in [9] to solve this boundary-value problem.
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Fig. 3. Calculated (curves) and experimental (points) diagrams of residual stresses σres
z (h) at a

temperature (T = 800◦C) and power loads: (a) N = 150 MPa, (b) N = 250 MPa; (1) after
hardening at time t = 0 − 0; (2) after thermal loading at time t = 0 + 0; (3) after thermal-power
loading at time t = 0+0; (4) after creep under thermal-power loading at time t = 50−0 h; (5) after
power unloading at time t = 50 + 0 h; (6) after thermal-power unloading at time t = 50 + 0 h.

2. CALCULATION OF THE INITIAL STRESS–STRAIN STATE

AFTER SURFACE PLASTIC DEFORMATION AND TEMPERATURE HEATING

We consider a solid cylindrical specimen of radius a, in which residual stress and plastic strain fields were

induced in the surface layer by air shot blasting at normal temperature T0. Then the specimen was heated to

temperature T1 (steady-state temperature field in the cylindrical specimen is considered). The problem is solved in

cylindrical coordinates (r, θ, z). We denote the radial, circumferential, and axial residual stresses by σres
r , σres

θ , and

σres
z , and the corresponding tensor components of the residual plastic strain after hardening by qr, qθ, and qz. The

off-diagonal components of the residual stress and plastic strain tensors will be neglected because of their smallness

compared to the diagonal components. Under the assumption of no secondary plastic strain in the compression

region of the surface layer and based on experimental data, the component σres
θ (r) was determined, and in [6, 8,

12, 13] for the remaining components of the residual stresses and plastic strain tensors, the following dependences

were obtained:

σres
r (r) = −1

r

a∫
r

σres
θ (ξ) dξ; (1)

qθ(r) =
(1 + ν)(1 − 2ν)

E(1 + aν)2
r−β

r∫

0

ξβ−1
[
σres
r (ξ) + (1 + α)σres

θ (ξ)
]
dξ

− 1 + ν

E(1 + αν)

[
(1− ν)σres

θ (r) − νσres
r (r)

]
, β =

2 + α

1 + αν
; (2)

qz(r) = αqθ(r), qr(r) = −(1 + α)qθ(r); (3)

ε0z =
2

a2

a∫

0

r
{
qz(r) − ν

E

[
σres
r (r) + σres

θ (r)
]}

dr; (4)

σres
z (r) = E

(
ε0z − qz(r)

)
+ ν

(
σres
r (r) + σres

θ (r)
)
, (5)
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Here E is Young’s modulus, ν Poisson’s ratio, α is the phenomenological hardening anisotropy parameter, whose

determination is described in [12, 13] (in the case of air shot blasting with microbeads, α = 1); the distributions of

the stresses σres
θ (r) and σres

z (r) almost coincide [6].

Thus, the calculation of the residual stress and plastic strain fields in a solid cylinder after hardening of its

surface (at time t = 0− 0) can be schematically represented as follows:

σres
θ (r)

(1)−→ σres
r (r)

(2)−→ qθ(r)
(3)−→ qz(r), qr(r)

(4)−→ ε0z
(5)−→ σres

z (r). (6)

Here the arrows show the sequence of determining the quantities; numbers above the arrow denote the number of

formulas by which these values are determined. From scheme (6) it follows that the components σres
r , σres

z , qθ, qr,

and qz are ultimately determined in terms of the quantity σres
θ and the parameter α.

Let the temperature T of the cylindrical specimen increase from value T0 to value T1, and T1 � T0. We denote

by E0 and E1 the Young’s moduli at temperatures T0 and T1, respectively; it is obvious that E1 < E0. We assume

that increasing the temperature does not lead to additional plastic deformation in the surface hardened layer of the

cylindrical specimen due to thermal softening of the plastic material. Under this assumption, the component σres
θ

at T = T1 can be determined by solving the integral equation (2) using (1) for E = E1 since the quantity qθ(r) is

known and does not depend on temperature. Since the solution of this problem is complex, we use the following

method which reduces the problem considered to the problem of fictitious creep. Assume that during heating, the

Young’s modulus varies as

E(τ) = E0 + (1− e−τ )(E1 − E0), (7)

where τ is a fictitious time (loading parameter). At τ > 10, the value of e−τ ≈ 0 and the value of E(τ) = E1

corresponds to temperature T1, and at τ = 0, the value of E(0) = E0 corresponds to temperature T0. Then, with

the notation

σres
0 (r, τ) = σres

θ (r, τ) + σres
z (r, τ) + σres

r (r, τ),

e0i (r, τ) =
(
(1 + ν)σres

i (r, τ) − νσres
0 (r, τ)

)
/E0, i = r, θ, z,

E∗ = (E0 − E1)/E0

and using relation (7) we have

ei(r, τ) =
(1 + ν)σres

i (r, τ) − νσres
0 (r, τ)

E(τ)
=

e0i (r, τ)

1− (1− e−τ )E∗ , i = r, z, θ.

Expanding the second factor in the last equality in a Taylor series, and retaining terms of the first order of smallness

with respect to E∗, we obtain

ei(r, τ) = e0i (r, τ) + e0i (r, τ)(1 − e−τ )E∗, i = r, θ, z. (8)

The second term on the right side of (8) will be called the fictitious creep strain (pseudo-creep) and denoted

by hi(r, τ):

hi(r, τ) =
E∗

E0

(
(1 + ν)σres

i (r, τ) − νσres
0 (r, τ)

)
(1− e−τ ), i = r, θ, z.

Differentiating this equation with respect to time, we get

ḣi(r, τ) =
E∗

E0

(
(1 + ν)σres

i (r, τ)− νσres
0 (r, τ)

)
− hi(r, τ), i = r, θ, z, (9)

where the dot denotes the derivative with respect to the loading parameter τ .

Relations (9) are similar in form to the relations of the hereditary theory of viscoelasticity with an exponential

creep kernel and initial data hi(r, 0) = 0, where i = r, θ, z [14].

Representing the total strain εi(r, τ) as

εi(r, τ) = e0i (r, τ) + qi(r) + hi(r, τ), i = r, θ, z, (10)

we can calculate the stress–strain state in the process of heating of a cylindrical product to temperature T1 using the

forward method developed in [9] to solve the boundary-value creep problem for a hardened cylindrical specimen,
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and as the final solution we use the asymptotic solution for τ → +∞ (in practice, this solution corresponds to

values τ > 10, because, in this case, e−τ ≈ 0). It should be noted that the temperature deformations in (10)

are neglected as they do not influence on the stress state because of the homogeneity of the temperature field

distribution over the volume of the cylindrical specimen.

Implementation of the numerical method [9] in solving the fictitious creep problem allows finding the residual

stress tensor components σres
i , i = r, z, θ at time t = 0 + 0 at temperature T1 (we assume that the heating of the

cylindrical specimen occurred instantaneously).

3. NUMERICAL SOLUTION OF THE PROBLEM AND ANALYSIS OF THE RESULTS

This section provides a numerical solution of the problem of the relaxation of residual stresses in the hardened

layer of a solid cylindrical specimen of ZHS6KP alloy at 800◦C in axial tension under creep conditions. In the

theoretical analysis of the results of these experimental studies (see Section 1), we performed a numerical calculation

of the kinetics of residual stresses in the hardened cylindrical specimen of ZHS6KP alloy at a temperature of 800◦C
in creep under tensile distributed loads N = 150 and 250 MPa and under thermal exposure conditions (N = 0).The

method of solving this problem is described in [9]. Steady creep was modeled by the following rheological relations:

ṗij =
3

2
cSm−1

(
σij − 1

3
δijσkk

)
. (11)

Here, pij and σij are the stress tensor and creep strain components, respectively; S is the stress intensity; c and

m are parameters. To determine the parameters of model (11) and implement the numerical procedure of solving the

creep problem for the hardened specimen, it is necessary to have experimental data on the creep of ZHS6KP alloy

at temperatures of 800◦C, but such information is available only for temperatures of 900, 950, and 1000◦C [15, 16].

Based on these data [17], a stochastic model of non-isothermal creep was constructed for said material. Neglecting

the first stage of creep (because of its short duration), given that the third stage in the time interval from 0 to 50 h

is absent, and by extrapolating the corresponding temperature dependences for the mathematical expectations of

the parameters c and m model (11), we determined their values at T = 800◦C: c = 5.454 · 10−29 MPa−m, and

m = 9.815.

Note that according to scheme (6), the initial information for the calculation of the residual stress and plastic

strain fields in a cylindrical specimen of radius a is the circumferential component σres
θ (r), which, according to [6, 8],

can be approximated as

σres
θ (r) = σ0 + σ1 exp

(
−(a− r)2/b2

)
,

where σ0, and σ1, b are approximation parameters.

Since, in this case, experimental data for the component σres
z (r) are available, and for the component σres

θ (r)

they are absent, the parameters σ0, σ1, and b were varied, and for each set of their values, a numerical calculation

was carried out by scheme (6) until the minimum was reached for the functional of the standard deviation of the

calculated values of σres
z from the experimental values (points in Fig. 2). As a result, the following values of the

parameters were obtained: σ0 = 19.3 MPa, σ1 = 1019.3 MPa, and b = 0.08 mm.

Figure 2 shows the results of calculating the value of σres
z (h) by scheme (6) at time t = 0− 0 after hardening

(curve 1), the results of calculation at time t = 0+0 after thermal loading (curve 2), at time t = 50−0 h after creep

at a temperature of 800◦C under thermal exposure (N = 0) (curve 3), and at time t = 50 + 0 h after unloading to

the normal temperature (20◦C) (curve 4). In the calculations, we used the following values of the Young’s modulus:

E0 = 2 · 105 MPa at a temperature of 20◦C, and E1 = 1.492 · 105 MPa at a temperature of 800◦C. The Poisson’s

ratio was set equal to ν = 0.3.

Similar information for cylindrical specimens under tensile axial distribution loads N = 150 and 250 MPa is

shown in Fig. 3. Comparing the final calculated distributions of the stresses σres
z (h) in Fig. 2 (curve 4) and Fig. 3

(curve 6), it can be noted that within the framework of the proposed mathematical model, applying an axial tensile

load slows the relaxation of residual stresses under creep conditions (at least, in the investigated time intervals and

for given tensile stress.) Note also the satisfactory agreement between the calculated and experimental data on the

residual stresses after creep for 50 h [taking into account the temperature approximation for the parameters c and

m in relations (11)].
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Fig. 4. Relaxation of residual stresses σres
z on the surface of a cylindrical specimen due to creep

for different distributed tensile loads N : points are experimental data, and curves are calculation
results for N = 0 (1), 150 (2), 250 (3), 300 MPa (4).

A more complete understanding of the phenomena mentioned above is provided by estimates (see Fig. 4)

for the maximum (in absolute value) value of σres
z on the surface of the cylindrical specimen after creep.In the case

considered, for relatively small values of the tensile load (100–200 MPa) there is a decrease in the relaxation rate

stress compared to the version of thermal exposure in the absence of tensile load (N = 0), and at loads of higher

intensity (250–300 MPa), the relaxation rate decreases only the initial portions of the time interval. For large time

values, the stress relaxation rate becomes higher than that in the case of thermal exposure.

Thus, the relaxation of residual stresses in the surface hardened layer of cylindrical specimens subjected to

tensile loading under creep conditions is determined by the initial stress–strain state arising after hardening, and

its nature depends on the magnitude and duration of the applied tensile load.

This work was supported by the Ministry of Education and Science of the Russian Federation (Grant
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REFERENCES

1. I. A. Birger, Residual Stresses (Mashgiz, Moscow, 1963) [in Russian].
2. V. F. Pavlov, V. A. Kirpichev, and V. B. Ivanov, Residual Stresses and Fatigue Resistance of Toughened Parts

with Stress Concentrators (Samara Scientific Center, Russian Acad. of Sci., Samara, 2008) [in Russian] .
3. I. G. Grinchenko, Hardening of Parts from Heat-Resistant and Titanium Alloys (Mashinostroenie, Moscow,

1971) [in Russian].
4. B. A. Kravchenko, V. G. Krutzilo, and G. N. Gutman. Thermoplastic Hardening is a Reserve for Increasing

the Strength and Reliability of Machine Parts (Samara State Technical University, Samara, 2000) [in Russian].
5. A. M. Sulima, V. A. Shuvalov, and Yu. D. Yagodkin, Surface Layer and Performance of Gas Turbine Engines

(Mashinostroenie, Moscow, 1988) [in Russian].
6. V. P. Radchenko and M. N. Saushkin, Creep and Relaxation of Residual Stresses in Hardened Structures

(Mashinostroenie, Moscow, 2005) [in Russian]
7. O. V. Kolotnikova, “Effectiveness of Hardening by Surface Plastic Deformation of Parts Operating at Elevated

Temperatures,” Probl. Prochn., No. 2, 112–114 (1983).
8. V. P. Radchenko and M. N. Saushkin, “Mathematical Models of Recovery and Relaxation of Residual Stresses

in the Surface-Hardened Layer of Cylindrical Structural Elements in Creep,” Izv. Vyssh. Uchebn. Zaved.,
Mashinostr., No. 11, 3–17 (2004).

9. V. P. Radchenko and M. N. Saushkin, “Direct Method of Solving the Boundary-Value Problem of Relaxation
of Residual Stresses in a Hardened Cylindrical Specimen under Creep Conditions,” Prikl. Mekh. Tekh. Fiz. 50
(6), 90–99 (2009) [J. Appl. Mech. Tech. Phys. 50 (6), 989–997 (2009)].

319



10. S. I. Ivanov, “Determination of Residual Stresses in a Cylinder by the Method of Rings and Stripes,” in Residual
Stresses (Kuibyshev Aviation Institute, Kuibyshev, 1974), Issue 53, pp. 32–42 [in Russian].

11. S. I. Ivanov, “Determination of Residual Stresses in the Surface Layer of a Cylinder,” in Problems of the Strength
of Aircraft Structural Elements (Kuibyshev Aviation Institute, Kuibyshev, 1971), Issue 48, pp. 153–168.

12. V. P. Radchenko, V. F. Pavlov, and M. N. Saushkin, “Determination of the Hardening Anisotropy Parameter
and Residual Stresses in a Cylindrical Steel Specimen after Rolling,” Probl. Mashinostr. Prochn. Mashin, No. 4,
93–100 (2011).

13. V. P. Radchenko, M. N. Saushkin, and V. F. Pavlov, “Method of Calculating the Fields of Residual Stresses
and Plastic Strains in Cylindrical Specimens with Allowance for Surface Hardening Anisotropy,” Prikl. Mekh.
Tekh. Fiz. 52 (2), 173–182 (2011) [J. Appl. Mech. Tech. Phys. 52 (2), 302–310 (2011)].

14. Yu. P. Samarin, Equation of State for Materials with Complicated Rheological Properties (Kuibyshev State
University, Kuibyshev, 1979) [in Russian].

15. A. N. Badaev, “On the Determination of the Distribution Function of the Parameters of the Creep State
Equation,” Probl. Prochn., No. 12, 22–26 (1984).

16. V. I. Kovpak and A. N. Badaev, “Unified Approach to Predicting Creep. Issues of Heat-Resistant Materials in
the Statistical Aspects,” in Standardized Methods for the Determination of Creep and Rupture Strength (Izd.
Standartov, Moscow, 1986), pp. 51–62 [in Russian].

17. V. P. Radchenko, M. N. Saushkin, and E. P. Goludin, “Stochastic Model of Nonisothermal Creep and Long-
Term Strength of Materials,” Prikl. Mekh. Tekh. Fiz. 53 (2), 167–174 (2012) [J. Appl. Mech. Tech. Phys. 53
(2), 292–298 (2012)].

320


	Abstract
	INTRODUCTION
	1. METHOD OF EXPERIMENTAL STUDY
	1.1. Test Specimens
	1.2. Hardening of Specimens
	1.3. Determining Residual Stresses after Treatment with Microbeads
	1.4. Determining Residual Stresses after Creep Loading at Elevated Temperatures

	2. CALCULATION OF THE INITIAL STRESS–STRAIN STATEAFTER SURFACE PLASTIC DEFORMATION AND TEMPERATURE HEATING
	3. NUMERICAL SOLUTION OF THE PROBLEM AND ANALYSIS OF THE RESULTS
	REFERENCES

