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Abstract: We analyze the applicability of a modified Leonov–Panasyuk–Dugdale model to the

description of the propagation of a mode I crack in structured materials under plane stress conditions.

For quasi-brittle materials, refined formulas of the critical length of the prefracture zone and the

critical load containing a structural parameter are proposed. The Kornev model is extended to the

case of quasi-ductile materials. Numerical simulation of plastic zones in square plates of a bimetal

and a homogeneous material under quasi-static loading is performed. In the numerical model, the

equations of deformable solid mechanics are expressed in the Lagrangian formulation, which is the

most preferred for large-strain deformations of elastoplastic materials. The results of the numerical

experiments are consistent with the results of calculations using the analytical model for the fracture

of structured materials.
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INTRODUCTION

In a review of experimental studies [1], it is noted that one of the most important factors causing fracture in

engineering structures is the presence of hidden cracks or crack-like defects. In addition, problems in constructing

analytical fracture models within the framework of linear fracture mechanics (LFM) are considered, especially for

structures of complex geometry under creep conditions. In [2], atomistic notions of solid state physics and dislocation

theory were used to describe the plastic zone. As a result, in the plastic zone, a semicircle (core) with center at

the tip of a real crack was distinguished within which the LFM approach is inapplicable. The dependence of the

characteristics of this core on the physical parameters of the materials, including the work of adhesion were studied

numerically. Since many of the parameters used in [2] are difficult to evaluate or are estimated heuristically, the

approach proposed in that paper allows only a qualitative description of the fracture mechanism.

Solutions of problems of cracks in bodies of finite sizes are of practical interest, but for such cases there are no

solutions in closed form. These problems are complex due to the boundary conditions [3]. It has been shown [4] that

the fracture criteria considering the characteristic size of the material structure has an extended range of application

compared to the traditional criteria, although the issue of how this size is related to the composition, structure, and

possibly other parameters of real materials has not been studied. The fracture model presented below is partially

described in [5], but, in this paper, too, there are no finite simple formula suitable for engineering calculations.

Problems the closest to the one considered in the present paper are studied in [6], where the fracture process is

described taking into account the elastic limits of the composite constituent materials, but not their structure.
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Fig. 1. Approximation of the plastic zone at the crack tip located at the interface: (1) material 1;
(2) material 2.

In the present paper, the fracture of structured materials is described using a modified Leonov–Panasyuk–

Dugdale model of the prefracture zone with necessary and sufficient failure criteria (Neuber–Novozhilov approach).

A modification of this analytical model was performed by Kornev [7, 8] and is used to solve various problems of

quasi-brittle fracture, so that it will be called the Kornev model. The main feature that distinguishes the Kornev

model from the classical Leonov–Panasyuk–Dugdale model is the presence of the width of the prefracture zone—an

additional parameter that models the diameter of the plastic zone. The introduction of this parameter allows a more

accurate evaluation of the destruction of the structure of the prefracture zone using information on the parameters

of the standard (σ−ε) diagrams of materials (σ is the stress and ε is the strain). This work is a continuation of [9–

12]. The basic assumptions of the Kornev model for a mode I crack located in the center of a structured bimetallic

square plate of size L × L along a straight-line interface are given below [9, 11]. The approximate relations of the

Kornev model are refined. The results of calculations using the refined model are compared with the results of

numerical experiments for cracks in a bimetallic plate [10] and a homogeneous structured plate [12].

1. KORNEV MODEL

We consider a square bimetallic plate of size L× L with a central internal crack of length 2l0, subjected to

axial tension by stresses σ∞ defined at the edges. Suppose that E1 = E2 and μ1 = μ2, where E1, μ1 and E2, μ2 are

the Young’s modulus and Poisson’s ratios of materials 1 and 2, respectively. Let the materials of the upper and

lower parts of the plate differ only beyond the yield points: σY 1 < σY 2. We introduce a coordinate system Oxy

in the plane of the square plate [7–10]. The coordinate origin coincides with the tip of the fictitious crack and the

tip of the real crack has the abscissa x = −Δ (Fig. 1). The ordinate Oy is perpendicular to the plane in which the

crack propagates.

In constructing fracture diagrams and a rectangular prefracture zone of size Δ× a ahead of the crack tip in

the bimetal, we use the sufficient fracture criteria (Neuber–Novozhilov approach)

1

kr1

nr1∫
0

σy(x, 0) dx � σY 1, x � 0; (1)

2ν(x) � δ∗1 , −Δ � x < 0. (2)

Here σy(x, 0) is the normal stress on the crack continuation, n and k are natural numbers (1 � k � n � 4), nr1 is the

averaging interval, r1 is the characteristic linear size of the structural element of material 1, the function ν = ν(x) is
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the crack half-opening, δ∗1 = (ε11 − ε01)a is the critical opening of the crack model for the homogeneous material,

ε01 is the maximum elastic elongation, and ε11 is the maximum relative elongation of the less strong (σY 1 < σY 2)

material 1.

The diameter a of the prefracture zone is identified with the half-diameter (only one, the less strong metal

is under plasticity conditions) of the plastic zone [9, 13] at the tip of the real crack in the homogeneous material:

a = 5(KI∞/σY 1)
2/(8π). (3)

At x = −Δ, inequality (2) becomes the equality [11]

8ε01
σY 1

(KI∞ +KIΔ)

√
Δ

2π
= (ε11 − ε01)

5Y 2

8π

( σ∞
σY 1

)2

l, (4)

where 2l = 2l0 + 2Δ is the length of the model crack. In equality (4), the stress intensity factor (SIF) KI∞ due to

the stress σ∞ will be represented by the following approximating formula [3, p. 74] for a central crack, which takes

account the finite dimensions of the sample:

KI∞ = Y σ∞
√
l,

where Y =
√
π/ cos (πl/L), and the SIF due to the constant stress σY 1 acting in accordance to the Leonov–

Panasyuk–Dugdale model by the formula

KIΔ = −σY 1

√
πl [1− 2 arcsin (1−Δ/l)/π]. (5)

Simplifying expressions (5) by using the approximation

arcsin (1−Δ/l) ≈ π/2−
√

2Δ/l, (6)

we obtain KIΔ ≈ −2σY 1

√
2Δ/π. Equation (4) can be written in the form of a quadratic equation with respect

to
√
Δ/l:

8ε01
σY 1

(Y σ∞√
2π

− 2σY 1

π

√
Δ

l

)√Δ

l
= (ε11 − ε01)

5

8

( Y σ∞√
πσY 1

)2

. (7)

Discarding the small term containing Δ/l in relation (7), we obtain an approximate expression corresponding to

the smallest root for the critical length of the prefracture zone in the less strong material:

Δ = 25
(ε11 − ε01

ε01

)2(Y σ∞
σY 1

)2 l

211π
. (8)

For the critical values of σ∞ and Δ, inequality (1) also becomes an equality. Substituting into (1) the

approximate representation of the normal stresses σy(x, 0) on the continuation of the central crack in a sample of

finite size [11, 14]:

σy(x, 0) =
KI∞√
2πx

+
L

L− 2l
σ∞ +

KIΔ√
2πx

, x � 0, (9)

and integrating, we have the equality

(KI∞ +KIΔ)

√
2nr1
π

+
L

L− 2l
σ∞nr1 = σY 1kr1. (10)

In (10), we also substitute the approximation (6) for the expressionKIΔ ≈ −2σY 1

√
2Δ/π, from which Δ is eliminate

using representation (8). Finally, for the critical stress σ∞, we obtain the relation

σ∞
σY 1

=
1

Y

[√ 2l

πr1

n

k2

(
1− 5

16π

ε11 − ε01
ε01

)
+

L

L− 2l

1

Y

n

k

]−1

. (11)

Formulas (8) and (11) describe the critical length of the prefracture zone Δ and the critical fracture

stress σ∞ in the case where the crack is located along the interface and the approximate representation of the

normal stress σy(x, 0) on the continuation of the crack is chosen in the form (9).

We introduce the dimensionless critical stress λ = σ∞/σY 1 (the critical stress referred to the yield point)

and the parameter χ = (ε11 − ε01)/ε01, which can be called the plasticity index or the reciprocal of the brittleness

index. Then, after a series of transformations, formulas (8) and (11) can be written as

Δ = 25χ2λ2lY 2/(211π); (12)

λ =
k

n

[ Y√
π

√
2l

nr1

(
1− 5χ

16π

)
+

L

L− 2l

]−1

. (13)

Formula (13), which is more compact than (11), allows a better representation of the results of calculations using

the proposed model.
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2. REFINED KORNEV MODEL

Let us analyze the obtained system of formulas (12) and (13). System (1) and (2) is equivalent to system (4),

(10) written using the SIF, provided that both systems contain the same function σy(x, 0) of the normal stress on

the crack continuation and the same function of the crack half-opening ν = ν(x). In Eqs. (4) and (10), the coefficient

KIΔ is represented using approximation (6). This approximation is valid due to the inequality Δ/l � 1. Indeed, the

error of approximation (6) does not exceed 0.4% at 0 � x � 0.1 (x = Δ/l) and does not exceed 6% as x increases

to the value x ≈ 0.4288. In addition, when solving Eqs. (7), the term containing Δ/l is dropped. Thus, in solving

the basic equation (4), we the coefficient KIΔ describing the prefracture zone is neglected (set to zero). The real

roots of Eq. (7)

Δ+,− = πY 2λ2l
(
1±

√
1− 5χ/(4π)

)2/
32 (14)

exist only if χ � 4π/5 ≈ 2.5. At χ � 2.5, for the smaller root Δ− with two terms of the binomial expansion

taken into account, we obtain the approximate equality Δ− ≈ πY 2λ2l(5χ/(8π))2/32 = 25χ2λ2lY 2/(211π), which

coincides with expressions (8) and (12). Therefore, the approximation (8) applies only if χ � 2.5. Note that this

restriction is significantly stronger than the restriction χ � 16π/5 ≈ 10 implied by formula (11) of the Kornev

model for n = k = 1 [9–11].

We refine the expression for the critical length Δ of the prefracture zone without using approximation (6)

in relation (5). For this, we rewrite system (4), (10) as follows:

KI∞ +KIΔ

σY 1
=

(k
n
− Lλ

L− 2l

)√πnr1
2

; (15)

KI∞ +KIΔ

σY 1

√
Δ

2π
=

χcY 2λ2l

8π
. (16)

Here c = 5/8 in the case of plane stress. In Eq. (16), we substitute the expression KI∞ +KIΔ from Eq. (15) and

in Eq. (15), the relation KI∞ = Y σ∞
√
l and relation (5) for the coefficient KIΔ. As a result, we obtain a system of

equations equivalent to the system of equations (15) and (16), and consequently, to the basic system of equations (1)

and (2):

λY√
π
−
[
1− 2

π
arcsin

(
1− Δ

l

)]
=

(k
n
− Lλ

L− 2l

)√nr1
2l

; (17)

(k
n
− Lλ

L− 2l

)√πnr1
2

√
Δ

2π
=

χcY 2λ2l

8π
. (18)

System (17), (18) will be called exact. From Eq. (18), assuming that the expression in brackets is not zero (KI∞ +

KIΔ �= 0), we obtain an exact expression for the length of the prefracture zone in a bimaterial sample of finite size:

√
Δ =

χcY 2λ2l

4π

[(k
n
− Lλ

L− 2l

)√
nr1

]−1

,

which for c = 5/8 can be written in a form convenient for comparison with formula (12):

Δ =
25χ2λ2Y 4

211π2

2l2

nr1

( k

nλ
− L

L− 2l

)−2

. (19)

Note that in contrast to formula (12), expression (19) for the length of the prefracture zone depends explicitly

(not implicitly through λ) on the parameters k and n characterizing the damage to the starting material, and also

depends on the characteristic size r1 of the structural element of the material. Expression (19) is exact as it is

derived from Eqs. (4) and (10) for KI∞ = Y σ∞
√
l without using any approximation for the coefficient KIΔ.
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Lengths Δ and r1 for different critical loads λ

λ
FEM Basic model Refined model

ΔE , mm ΔK , mm r1K , mm ΔM , mm r1M , mm ΔP , mm r1P , mm

0.0680 0.040 0.000 44 0.166 0.000 52 0.164 0.083 0.0010
0.0752 0.060 0.000 54 0.208 0.000 63 0.205 0.101 0.0013
0.0821 0.081 0.000 65 0.253 0.000 75 0.250 0.120 0.0016
0.0889 0.102 0.000 76 0.303 0.000 88 0.300 0.141 0.0019
0.1026 0.146 0.001 01 0.423 0.001 18 0.418 0.188 0.0026
0.1163 0.204 0.001 30 0.569 0.001 51 0.562 0.241 0.0035
0.1436 0.356 0.001 98 0.955 0.002 30 0.944 0.368 0.0059
0.1710 0.543 0.002 80 1.498 0.003 26 1.480 0.522 0.0093
0.2326 1.219 0.005 19 3.550 0.006 04 3.509 0.965 0.0220
0.3352 3.902 0.010 80 12.100 0.012 50 11.960 2.004 0.0749

Using approximation (6) in Eq. (17) and taking into account equality (18), we obtain a quadratic equation

with respect to λ:(( L

L− 2l

)2
√

πnr1
2l

+
LY

L− 2l
+

√
2l

πnr1

χcY 2

2π

)
λ2 − k

n

(
Y +

2L

L− 2l

√
πnr1
2l

)
λ+

k2

n2

√
πnr1
2l

≈ 0. (20)

System (18), (20) will be called approximate. The roots of Eq. (20) can be written as follows:

λ+,− ≈ k

2n

( 2L

L− 2l
+

Y√
π

√
2l

nr1

(
1±

√
1− 2χc

π

)) / ( L2

(L− 2l)2
+

LY

L− 2l

√
2l

πnr1
+

χcY 2l

π2nr1

)
. (21)

Note that in the case of plane stress (c = 5/8), the real roots of λ+,− of Eq. (21), as well as the roots of Eq. (14),

exist only for χ � 4π/5 ≈ 2.5 and they are nonnegative.

3. COMPARISON OF THE RESULTS OF ANALYTICAL

AND NUMERICAL CALCULATIONS

Formulas (12) and (13) of the Kornev model and formulas (19) and (21) of the refined model allow calculating

the length Δ of the prefracture zone and the characteristic linear size r1 of the structural element of the material

from the value of the critical load λ. Let us compare the results of calculations using these formulas and the

numerical simulation results.

3.1. Length of the Prefracture Zone in Bimetal

In [10], a 100.0 × 100.0 × 0.4 mm bimetallic square plate with a central crack of length 2l0 = 30 mm in a

plane stress state under tensile stress σ∞ applied to the edge was considered. The plate materials had the following

characteristics: E1 = E2 = 2 · 105 MPa, μ1 = μ2 = 0.25, σY 1 = 340 MPa, and σY 2 = 500 MPa. Paper [10] presents

the results obtained by a finite element method (FEM) with a numerical simulation of the real form of the plastic

zone in the vicinity of the tip of a mode I crack propagating along the interface between two metals. The values of

the critical fracture load λ and the length of the corresponding pre-fracture zone ΔE calculated using the FEM [10]

ate shown in the table.

Let us compare the values of ΔE obtained in the numerical experiment with the results of predicting the

length Δ of the prefracture zone at a given load λ using the analytical model. In addition to the parameters σ∞,

σY 1, and Δ, the exact formulas (4) and (10) contain the unknown mechanical characteristic of the material χ and

the unknown geometric parameters r1 and l of the structure. Calculations using the Kornev model [10] for the

given values of n = k = 1 and l = 15 mm have shown that the parameters χ and r1 vary with the load λ. If the

characteristic linear size r1 of the structural element of the material is assumed to be constant, then, as the critical

load λ increases by a factor of five (see [10, Table 1]), the plasticity index χ increases by a factor of three, and vice

versa, for a fixed value of χ, the value of r1 varies with the load. Apparently, this dependence is due to the influence

of the interfacial layer in regions close to the interface in the composite. The possibility of increasing the tensile

strength of the material by physicochemical interactions between the phases is discussed in detail in [15].
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Recall that the equations of continuum mechanics used in FEM numerical simulations do not contain the

parameter r1 [12]; therefore, we compare the results in the following manner. Assume that for a composite composed

of the materials used in [10], there are values of χ and r1 that are the same for all the load values λ given in the

table. Let l = 15 mm. Then, for a fixed load λ1, the system of exact equations (17) and (18) for n = k = 1 contains

three unknown quantities: Δ1, χ, and r1, and the last two unknowns have the same values for any load λ2 to which

a certain value of the length of the prefracture zone Δ2 corresponds.

We compose a system of four equations with four unknowns χ, r1, Δ1, and Δ2 corresponding to two different

load values λ1 and λ2, and find its solution numerically. For λ1 = 0.048 and λ2 = 0.3352, we obtain χ ≈ 0.683,

r1 ≈ 0.0768, Δ1 ≈ 0.00026, and Δ2 ≈ 1.956. Setting χ = 0.683, we calculate the values of Δ and r1 for each

value of the load in the table by solving the system of exact equations (17) and (18). The calculations show that

there are two different solutions: ΔM , r1M and ΔP , r1P (see the table). The values of ΔM are in poor agreement

with the values of ΔE obtained by the numerical simulation: ΔM is 80–300 times smaller than ΔE . In contrast,

the values of ΔP are in satisfactory agreement with the values of ΔE . In addition, we note that the values of ΔP

vary in the range 26r1P –86r1P . The table also shows the values of the prefracture zone length ΔK calculated by

formula (12) of the Kornev model, which, for all the load values considered, approximate the values of ΔM fairly

well; ΔK < ΔM . The values of the characteristic linear size r1K of the structural element of the material in the

Kornev model listed in the table were calculated from a predetermined load using equality (13). To elucidate the

effect of approximation (6) on the accuracy of the calculations for each load value by formula (14) we determined

the roots of the quadratic equation (7). It was found that for all load values λ � 0.1436, the roots Δ+,− of Eq. (7)

coincide, up to three significant figures, with the values of ΔP and ΔM given in the table and with the solutions of

the approximate system (18), (20).The results of the calculations also show that for a given load λ, the plus sign in

formula (21) corresponds to the value of r1P in the table, and the minus sign to the value of r1M .

Thus, from the analysis of the data in the table, it can be concluded that it is the value of λ− calculated

by formula (21) that is the critical load for quasi-brittle fracture. For χ = 0 (brittle fracture), we have the equality

λ− ≈ k/(L/(L − 2l) + Y
√

2l/(nr1) /
√
π )/n, which coincides with the expression obtained by formula (13) of the

Kornev model in the case of brittle fracture.

However, it was shown in [12] that in a numerical simulation of a bimetallic square plate having the same

characteristics as the plate studied in this paper and in [10] of the plate, quasi-brittle fracture was considered.

The results of numerical simulation given in [10] (values of ΔE in the table) agree much better with the results of

calculations by formula (21) in the case of λ+ (values of ΔP in the table). Consequently, formula (21) in the case

λ+ describes quasi-ductile fracture. Additional arguments for this statement are given below.

3.2. Fracture Diagrams for Bimaterial

In the Kornev model [9, 10], the normal stresses σy(x, 0) on the crack continuation are approximately

represented by the following [different from (9)] expression

σy(x, 0) ≈ σ∞|x+ l|√
(x+ l)2 − l2

+
KIΔ√
2πx

, KI∞ = σ∞
√
πl, (22)

which does not take into account the finite dimensions of the plate. In this case, the critical length Δ of the

prefracture zone in the less strong materials and the dimensionless critical stress λ are expressed in [10] as follows:

Δ = 25χ2λ2l/211; (23)

λ =
k

n

(√
1 +

2l

nr1
− 5χ

16π

√
2l

nr1

)−1

. (24)

Note that if the function σy(x, 0) is chosen in the form (22), the length Δ in expression (23) of the Kornev model does

not depend explicitly on the parameters k, n, and r1, as in Eq. (12). In the refined model with the function σy(x, 0)

in the form (22), the constitutive equations equivalent to system (1), (2) and similar to relations (17) and (18) are

written as

λ

√
1 +

nr1
2l

− k

n

√
nr1
2l

= 1− 2

π
arcsin

(
1− Δ

l

)
; (25)
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Fig. 2. Fracture diagrams of a square bimetallic plate with a central crack for n = k = 1, c = 5/8,
and χ = 2.4: (1) calculated by th formula (24) of the Kornev model; (2) calculated by formula (28)
of the refined model corresponding to the minus sign; (3) calculated by formula (28); corresponding
to the plus sign; (4) calculated by formula (13); (5) calculated by formula (21) corresponds to the
minus sign; (6) calculated by formula (21) corresponding to the plus sign.

[
λ−

(
λ

√
1 +

nr1
2l

− k

n

√
nr1
2l

)]√
Δ =

√
2l χcλ2

8
. (26)

From (25) and (26), we express the critical length of the prefracture zone Δ and [using approximation (6)] the

critical fracture stress λ as follows:

Δ =
χ2c2λ4l2

16nr1

[k
n
− λ

(√
1 +

2l

nr1
−
√

2l

nr1

)]−2

; (27)

λ+,− ≈ k

2n

√
nr1
2l

(
2

√
1 +

nr1
2l

− 1±
√
1− 2χc

π

) / (
1 +

nr1
2l

−
√
1 +

nr1
2l

+
χc

2π

)
. (28)

Figure 2 shows fracture curves in double logarithmic coordinates for n = k = 1, c = 5/8, and χ = 2.4.

Calculations showed that for any plasticity index 0 < χ � 4π/5, curves 2 and 3 are located above curve 1, i.e., the

fracture load predicted by formula (28) is greater than the load predicted by formula (24) of the Kornev model.

For χ = 0, curve 2 coincides with curve 1, and, hence, in this case there is a limiting transition from quasi-brittle

to brittle fracture. For χ = 4π/5, curve 2 coincides with curve 3, and this value of χ is critical and corresponds

to the transition point from the quasi-brittle fracture branch (λ−) to the quasi-ductile fracture branch (λ+). For

the branch corresponding to quasi-ductile fracture (λ+), the equality ΔP ≈ 30r1P is satisfied, which agrees well

with the results of [12, p. 190], in which the approximate equality Δ ≈ 34r1 for the load λ = 0.4 was obtained

for quasi-ductile fracture. Apparently, the inequality Δ < r1 is characteristic of quasi-brittle materials, and the

inequality Δ > r1 for quasi-ductile materials. Note that in the coordinate system (2l/(nr1), λ), the position of

curves 1–3 does not depend on the value of the parameter r1.

Let us clarify the meaning of the parameter c, for which the single value c = 5/8 (plane stress state) was

considered so far. In the case of a plane strain state, we have c = (5 − 8μ+ 8μ2)/(8 − 8μ2), i. e., the parameter c

characterizes the stress–strain state. At the same time, the value of c is proportional to the diameter a of the

prefracture zone: a = cλ2l [see (3), (16), and (26)]. The parameter c can be called a stiffness index or the reciprocal

of the ductility index. The parameters c and χ are related: if χc = π/2, the branches corresponding to quasi-

brittle (λ−) and quasi-ductile (λ+) fracture coincide, and if c = 0, formula (3) implies that a = 0 and, therefore,

the equality KI∞ +KIΔ = 0 of the Leonov–Panasyuk–Dugdale model holds. In the case c = 0, from Eq. (26) we

obtain the following expression for the critical load:

λ =
k

n

√
nr1
2l

/ (√
1 +

nr1
2l

− 1
)
=

k

n

√
2l

nr1

(√
1 +

nr1
2l

+ 1
)
,
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which coincides with the expression for λ+ in (28) for quasi-ductile fracture:

λ+ ≈ k

2n

√
nr1
2l

(
2

√
1 +

nr1
2l

) / (
1 +

nr1
2l

−
√
1 +

nr1
2l

)
=

k

n

√
2l

nr1

(√
1 +

nr1
2l

+ 1
)
.

In addition, for c = 0, Eq. (26) leads to the equality λ = λ
√

1 + nr1/(2l) − k
√

nr1/(2l) /n, using which from

Eq. (25) we obtain the expression λ = 1 − 2 arcsin (1 − Δ/l)/π, which relates the prefracture zone length to the

load or Δ/l = 1 − cos (πλ/2) ≈ π2λ2/8 + 5π4λ4/384. This expression is consistent with the expression Δ/l =

sec (πλ/2)− 1 ≈ π2λ2/8− π4λ4/384 given in [13, p. 65] for the Leonov–Panasyuk–Dugdale model.

Similarly calculations are carried out if the normal stresses σy(x, 0) are represented by relation (9), which

takes into account the finite dimensions of the plate. Then, for c = 0 [hence, according to Eq. (16), KI∞+KIΔ = 0]

from Eq. (18) we express the critical load as λ = k(L − 2l)/L/n, which coincides with expression (21) for λ+ for

quasi-ductile fracture. Equation (17) leads to the equality λY/
√
π = 1− 2 arcsin(1−Δ/l)/π, from which, using the

relation Y =
√

π/ cos (πl/L), we express the length of the pre-fracture zone as Δ/l = 1− cos (πλ/(2
√
cos (πl/L) )).

For small crack lengths (l/L � 1), this expression is consistent with the expression for the length Δ in the Leonov–

Panasyuk–Dugdale model.

Figure 2 also shows fracture curves 4–6 constructed for r1 = 0.118 by formulas (13) and (21), taking into

account the finite dimensions of the bimetallic plate. In the coordinate system (2l/(nr1), λ), curves 4–6 depend on

the parameter r1, but for any value of r1, curves 4, 5, and 6 lie below curves 1, 2, and 3, respectively.

3.3. Fracture Diagrams of a Homogenous Structured Material

Results of a finite element simulation of crack propagation in a homogeneous material are presented in [12].

As in [12], we substitute into equality (1) the representation of the normal stress σy(x, 0) on the crack continuation

due to the stress σ∞:

σy(x, 0) ≈ KI∞√
2πx

+ σ∞ +
KIΔ√
2πx

, KI∞ = σ∞
√
πl. (29)

For the diameter of the prefracture zone in the homogeneous material in a plane stress state, we will use the

expression a = 5λ2l/4, which differs from expression (3). Performing the procedure described in Section 2, for the

refined analytical model we obtain the following system of approximate equations for the length Δ of the prefracture

zone and the dimensionless critical load λ:

Δ =
25χ2

211
λ2l

2l

nr1

( k

nλ
− 1

)−2

; (30)

λ =
k

n

(
2 +

√
2l

nr1

(
1±

√
1− 5χ

2π

)) / (
2 + 2

√
2l

nr1
+

5χ

4π

2l

nr1

)
. (31)

Figure 3 shows fracture curves for the homogeneous material. Curve 1 is constructed by the formula

λ = 1/(1 +
√
2l/r1 ), (32)

which, for χ = 0 (brittle fracture), corresponds to representation (29) of the normal stress on the crack continuation

in the Kornev model. As in [12], curve 1 is obtained for r1 = 0.118.

Curve 2 is constructed by the formula

λ = 1/
√
0.9999 + 16.95l , (33)

which was chosen as a result of a least-squares approximation of numerical simulation results [12]. FEM numerical

simulation was performed for a square steel plate of size 100.0×100.0×0.4 mm. The length 2l of the internal crack

was varied from 4 to 90 mm. Curve 3 was constructed by formula (31) of the refined model for χ = 0.0001 and

n = k = 1. Formula (31) contains the plus sign before the square root. The value of the parameter r1 was chosen

so as to match the load values λ calculated by formulas (31) and (33) for l = 2. It is evident in Fig. 3 that at

small crack length (l < 5), curve 2 is better approximated by curve 3 than by curve 1. The deviation of curve 3 for

l > 5 is due to the influence of the finite dimensions of the plate, which was neglected in model (30), (31).

To account for the finite dimensions of the homogeneous square plate, we represent the normal

stresses σy(x, 0) on the central crack continuation in the form (9), and express the diameter of the prefracture
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Fig. 3. Fracture curves for the homogeneous material: (1) calculated by formula (32); (2) calculated
by formula (33); (3) calculated by formula (31).

zone in the homogeneous material in a plane stress state as a = 5λ2l/4. Then, for the Kornev model, we have the

following system of equations for the length of the prefracture zone Δ and the dimensionless critical load λ:

Δ = 25χ2λ2lY 2/(29π); (34)

λ =
k

n

[ Y√
π

√
2l

nr1

(
1− 5χ

8π

)
+

L

L− 2l

]−1

, (35)

and for the refined model, the system of equations

√
Δ =

5χY 2

16π
λ2l

[(k
n
− Lλ

L− 2l

)√
nr1

]−1

; (36)

λ1,2 =
k

n

( 2L

L− 2l
+

Y√
π

√
2l

nr1

(
1±

√
1− 5χ

2π

)) / ( 2L2

(L− 2l)2
+

2LY

L− 2l

√
2l

πnr1
+

5χY 2l

2π2nr1

)
. (37)

Relations (34), (35), and (36), (37) differ from relations (12), (13) and (19), (21), respectively, in numerical co-

efficients: in the bimaterial (c = 5/8), the diameter a of the prefracture zone is half that in the homogeneous

material (c = 5/4).

Figure 4 shows fracture curves for the homogeneous square plate. Curve 1 is constructed using formula (35)

which, for χ = 0 (brittle fracture) corresponds to representation (9) of the normal stress on the crack continuation

in the Kornev model. As in [12], curve 1 is constructed for r1 = 0.118. Curve 2 is constructed by formula (33), and

curve 3 by formula (37) of the refined model for χ = 0.0001 and n = k = 1. In formula (37), the plus sign before

the square root was used (quasi-ductile fracture). The value of the parameter r1 was chosen so as to match the load

values λ calculated by formulas (37) and (33) for l = 2. Comparison of the curves given in Figs. 3 and 4 with the

results of [12] shows that curve 3 in Fig. 4 is better consistent with the results of the numerical experiment.

4. DISCUSSION OF THE SIMULATION RESULTS

In the present work, we obtained the exact expression (19) for the length of the prefracture zone of quasi-

brittle materials in the Kornev model. This expression was used to refine expression (21) for the critical fracture

load. Analysis of relations (14) and (21) showed that the range of admissible values of the parameter χ in the

refined Kornev model is four times smaller than the range of admissible values of χ corresponding to the simplified

relation (13) in the Kornev model.

Introduction of the new parameter c to this model made it possible to supplement the model with formulas

for the length of the prefracture zone and the critical load for quasi-ductile fracture of materials. The comparison
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Fig. 4. Fracture curves for the square metal plate: (1) calculated by formula (35); (2) calculated
by formula (33); (3) calculated by formula (37).

made in Section 3 showed good agreement between the results of FEM simulations [10, 12] and the theoretical

estimates obtained using the refined model presented in this paper in the case of quasi-ductile fracture.

In [11], the fracture of a laminated composite was studied within the framework of the Kornev models using

formulas for the critical loads taking into account the finite dimensions of the samples. However, processing of the

results of full-scale experiments using the Kornev model for quasi-brittle materials involved difficulties: it was often

not possible to find a numerical solution of the constitutive equations. Perhaps these difficulties are partly due to

restriction on the parameter χ � 2.5, which in [11] was not always satisfied.

5. CONCLUSIONS

In this paper, refined formulas for the critical length of the prefracture zone and the critical load for quasi-

brittle materials were proposed. The Kornev model was extended to the case of quasi-ductile materials.

When using the analytical model to describe the fracture of structured materials, the geometry of the samples

and the mechanical characteristics of the sample materials are taken into account, in particular, the parameter

characterizing the linear size of the structural element of the material.

Analysis of the calculation results suggests that the Kornev model provides a qualitative estimate of the

fracture load depending on the length of the initial crack. Thus, the analytical model considered here can be used

to study the deformation and fracture of composites of structured materials. This will allow a reduction in the

amount of full-scale tests required to evaluate the fracture load.

This work was supported by the Russian Foundation for Basic Research (Grant No. 14-08-00113) and the

Program for Basic Studies of Russian Academy of Sciences (No. 01201365412).
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