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Abstract: The problem of determining a stress–strain state described by singular and regular terms

and a stress intensity factor in the vicinity of the tip of a crack-like defect in a plate under biaxial

loading is considered. The Kolosov–Muskhelishvili method is used to obtain expressions for the stress

tensor near the vertex of an ellipse, which yield formulas for stresses in the case of blunt cracks. The

maximum shear stress, principal stresses, and stress intensity are determined. Formulas for the stress

intensity factor under biaxial loading of a plate with a crack-like defect are obtained and can be used

in the holographic interferometry method.
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INTRODUCTION

One of the reasons for the loss of efficiency of long-distance gas oil pipelines, storage tanks, pressure vessels,

torus shells, and a number of other structures is their fracture because of crack-like defects generated in welding

and assembly (scratches, guide marks, burrs, and blowholes) or during operation (pitting and corrosive-mechanical

cracks) due to metal corrosion. In contrast to cracks, the considered stress concentrators, such as welding defects

and corrosive blunted cracks, even the sharpest ones, have a small but finite curvature radius ρ [1].

The methods of fracture mechanics allow one to determine the resistance of metals with cracks to fracture.

However, the specific feature of welds is that, even in the absence of cracks, they have stress concentrators with

sufficiently small curvature radii, which can be hazardous for operation of such structures. The usage of the fracture

mechanics criteria developed to estimate the risk of cracks is incorrect in the case of concentrators (poor penetration,

poor fusion, and slag inclusions) typical for welds.

Crack-like defects with a rounded tip cannot be interpreted as sharp cracks, so they cannot be studied by

using the criteria of the theory of cracks [2]. The presence of large strain and stress gradients in the vicinity of such

concentrators does not allow using the classical strength criteria. The theory of calculation of such defects, which

occupies an intermediate position between the theory of cracks and the theory of strength of bodies with structural

stress concentrators, has been insufficiently developed [2]. In this paper, we propose a mathematical model of the

stress–strain state near the tip of an elliptical defect in a plate under biaxial loading, which takes into account the

curvature radius ρ at the tip of the defect.
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Fig. 1. Diagram of the problem of the elliptical defect in the plate subjected to biaxial loading.

Engineering defects (undercuts, blowholes, cuts, pores, poor penetration, poor fusion, and cracks) impair

the resistance of structures to brittle fracture. The radius ρ at the tip of poor penetration can change in a wide

range: ρ = 0.01–0.10 mm. In this case, the use of the known criteria of linear fracture mechanics, unadjusted for

the geometry of crack-like defects and the curvature radius ρ, leads to great errors [2].

Williams [3] obtained a solution to the problem of the elasticity theory for a crack in a plate under uniaxial

tension, but the stresses were analyzed only for a singular term.

Eftis et al., mentioned [4] that one should consider the second term in the expansion of the components into

a series when solving the problem of determination of the stress and strain tensor components in the case of biaxial

loading of a plate with a central crack.

The solution of the problem of the stress distribution around the tip of the cut and the slip line theory were

used to develop a model of fracture nucleation [5] at a distance rc from the tip at a stress σc, which was used to

derive a formula for the stress intensity factor (SIF) proportional to
√
ρ.

The Kolosov–Muskhelishvili method was used in [6] to obtain approximate formulas for the stress–strain

state and the SIF around the tip of an elliptic defect under biaxial loading of a plate [7, 8].

The goals of this work are the approximate calculation of the stress state of a plate near the tip of a crack-like

defect with a curvature radius ρ under biaxial loading and the experimental determination of the stress–strain state

by the holographic interferometry method.

1. STRESSES AND DISPLACEMENTS IN THE CASE OF A CRACK-LIKE DEFECT

OF THE FIRST TYPE UNDER BIAXIAL LOADING OF A PLATE

We consider an engineering crack-like defect in the shape of an elliptic through-hole under biaxial loading of

a plate made of an isotropic material.

We assume that an infinite plate with an elliptic hole with semiaxes of lengths a and b is loaded with

stresses σ and εσ along the axes of the initial coordinate system. Figure 1 shows the diagram of this problem (ε is

the biaxial loading parameter, i.e., the ratio of the stresses acting in the horizontal and vertical directions). The

curvature radius of the elliptical hole in its tip is denoted as ρ = b2/a. The variables r and θ are the coordinates of

the polar coordinate system centered at the focus of the ellipse (see Fig. 1).

The values of R and m and the focal length d are the ellipse parameters and are related to the lengths of

the ellipse semiaxes a and b by the expressions

R = (a+ b)/2, m = (a− b)/(a+ b), a = R(1 +m), b = R(1−m),

d2 = a2 − b2, −1 < m < 1, d2 = 4ma2/(1 +m)2 = 4mR2.
(1.1)

The distance from the crack tip to the focus of the ellipse is equal to a− d and, at m ≈ 1, is approximately

equal to ρ/2. To clarify the relationship between these variables, we can express the ratio ρ/(2(a− d)) through the

ellipse parameter m. Using Eqs. (1.1), we obtain
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ρ

2(a− d)
=

(1 +
√
m )2

2(1 +m)
. (1.2)

Using Eqs. (1.1) and (1.2), we determine the stress tensor components with regular terms near the elliptic

through-defect in the plate under biaxial tension:

σx ≈ − DKI√
2πr

ρ

2r
cos

(3θ
2

)
+

A1KI

4
√
2πr

− σ
[(2r

ρ

)−1/2

D3/2(1 + ε) cos
(θ
2

)
− (1 − ε)

D2

m

]
; (1.3)

σy ≈ DKI√
2πr

ρ

2r
cos

(3θ
2

)
+

B1KI

4
√
2πr

+ σ
[(2r

ρ

)−1/2

D3/2(1 + ε) cos
(θ
2

)
+ (1− ε)

D2 − 1

m

]
; (1.4)

τxy ≈ − DKI√
2πr

ρ

2r
sin

(3θ
2

)
+

C1KI

4
√
2πr

− σ
(2r
ρ

)−1/2

D3/2(1 + ε) sin
(θ
2

)
. (1.5)

Here

A1 = cos (5θ/2) + (4− 2A) cos (θ/2), B1 = − cos (5θ/2) + (2A+ 4) cos (θ/2),

C1 = sin (5θ/2)− 2A sin (θ/2),

D = (1 +m)/(2
√
m ), A = (17m2 + 6m− 15)/(16m), r = |r|.

If the ellipse degenerates to a crack (m = 1), the first two singular terms in expressions (1.3)–(1.5) correspond

to the known formulas [1].

The stress intensity factor is [7]

KI =
4

√
4m

(1 +m)2
√
πa

σ(m(1 + ε) + (1− ε))

2m
, m =

1−√
ρ/a

1 +
√

ρ/a
. (1.6)

It follows from expressions (1.3)–(1.5) that the stress tensor components depend on the parameter of biaxial

loading of the plate ε and the nominal tensile stress σ.

The first two terms (singular part) in expression (1.4) are the stress distribution σy near the tip of the defect.

It follows from expression (1.4) that the two singular terms increase toward the defect tip and begin significantly

affecting the stress–strain state. As r → 0, the influence of other terms decreases, whereas the stress field intensity

in the vicinity of the defect tip depends only on the SIF value.

Expressions (1.3)–(1.5) for the stress tensor components σx, σy , and τxy differ from those given in [1] by the

presence of regular terms and a singular term containing r−3/2. In the case of a crack (m = 1 andD = 1), expressions

(1.3)–(1.5) correspond to those for the stress components in [4, 7]. For the ellipse parameter 0.9 � m � 1.0, the

value of the first principal stress calculated by expressions (1.3)–(1.5) at a distance from the crack tip equal to

several tens of the curvature radius ρ differs from the value obtained by the formulas from [1] by not more than 6%.

In view of expressions (1.3) and (1.4), the equation for the sum of the normal stresses σx + σy in the case of

a central elliptical cutout under biaxial loading of the plate can be written in the following form:

σx + σy = 2
KI√
2πr

cos
θ

2
− σ(1− ε)

m
.

The equation for the difference of the normal stresses σy − σx has the form

σy − σx =
DKI√
2πr

ρ

r
cos

(3θ
2

)
− (A1 −B1)KI

4
√
2πr

+ σ
[(2r

ρ

)−1/2

D3/2(1 + ε) cos
(θ
2

)
+ (1− ε)H

]
. (1.7)

Here H = (1 + m2)/(2m2). In the case of a linear crack, at ρ = 0, m = 1, and θ = 0, Eq. (1.7) takes the form

σy − σx = σ(1 − ε) = T [4, 5, 9].
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In the present problem, the displacements are calculated by the formulas

u ≈ 1

2μ

[KI

4

√
ρ

2π

( r
ρ

)−1/2

cos
(θ
2

)
+

√
r√
2π

D1KI

− σρ
( r
ρ

)1/2

(1 + ε) cos
(θ
2

)
− σr(1 − ε)

4
(1 + κ) cos θ − aT

4
(1 + κ)

]
, (1.8)

v ≈ 1

2μ

[KI

4

√
ρ

2π

( r
ρ

)−1/2

sin
θ

2
+

√
r√
2π

E1KI − σρ
( r
ρ

)1/2

(1 + ε) sin
θ

2
+

rT

4
(3− κ) sin θ

]
,

where D1 = cos (θ/2)(κ − 1 + 2 sin2(θ/2)) and E1 = sin (θ/2)(κ + 1− 2 cos2(θ/2)).

At ρ = 0, expressions (1.8) yield the well-known formulas given in [4].

2. PRINCIPAL STRESSES IN THE CASE OF A CRACK-LIKE DEFECT

UNDER BIAXIAL LOADING OF A PLATE

Considering expressions (1.3)–(1.6), the principal stresses can be calculated by the formula

σ1,2 =
KI√
2πr

cos
(θ
2

)
− σ(1 − ε)

2m
±

√( KI√
2πr

)2

F1 +
2σKI√
2πr

F2 + σ2F3 , (2.1)

where

F1 = D2
( ρ

2r

)2

+D cos θ
(
A− 1

2

) ρ

2r
+

1

16
(1− 4A cos 2θ + 4A2),

F2 = D5/2
( ρ

2r

)3/2

(1 + ε) cos θ +D
ρ

2r
(1 − ε) cos

(3θ
2

)H
2

+D3/2
( ρ

2r

)1/2 1 + ε

4
(2A− cos 2θ) +

(1− ε)H

8

(
2A cos

(θ
2

)
− cos

(5θ
2

))
,

F3 = (1 + ε)2D3 ρ

2r
+ 2(1− ε2)D3/2

( ρ

2r

)1/2H

2
cos

(θ
2

)
+ (1− ε)2

(H
2

)2

.

The distribution of the principal stresses σ1 and σ2 calculated by Eq. (2.1) in the case of uniaxial tension of the

plate at ε = 0 and ρ = 0.01 corresponds to the results obtained in [3]. It is interesting to study the dependences of

the principal stresses σ1 and σ2 on the polar angle θ by using Eq. (2.1). In the case of uniaxial (ε = 0) tension of

the plate, the principal stress σ1 reaches the greatest value at θ = 60◦ and the cut curvature radius values in the

range ρ/a = 0.01–0.10. In the case of the crack, the maximum value of σ1 is also reached at θ = 60◦ [3].

The stress intensity σi calculated according to the von Mises plasticity criterion in the case of a plane stress

state in the plate with a central elliptical cutout in view of expressions (1.3)–(1.5) is equal to

σ2
i =

( KI√
2πr

)2(
cos2

(θ
2

)
+ 3F1

)
+

2σKI√
2πr

[
− 1− ε

2m

(
cos

(θ
2

)

+ 3
1 +m2

4m

(1
2
cos

(5θ
2

)
−A cos

(θ
2

)))
− 3(1 + ε)

4
D1/2

( ρ

2r

)1/2(
cos 2θ − 2A

)

+
3(1− ε)

4m2
D

ρ

2r
cos

(3θ
2

)
+ 3(1 + ε)D5/2

( ρ

2r

)3/2

cos θ
]

+ σ2
[(1− ε

m

)2

+ 3(1− ε)2
(1−m2

4m2

)2

+ 3(1 + ε)2D3 ρ

2r
+ 3(1− ε2)D3/2

( ρ

2r

)1/2

cos
(θ
2

)
H
]
. (2.2)

At σi = σyield (σyield is the yield point), we can use Eq. (2.2) to determine the size of the plastic zone in the

cut in the same way as it was done in [5].
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Fig. 2. Shapes of the plastic zone for different values of the ellipse parameter:
m = 1 (1), 0.9 (2), and 0.7 (3).

To construct the lines of constant intensity levels for the stresses σi under biaxial loading of the plate,

numerical methods should be used because the quantity
√
r in Eq. (2.2) has a sixth power. Figure 2 shows the

plastic zone radius in the case of tension of the plate with an elliptical cutout at σ = 0.3σyield and ε = 0.5. A

decrease in the parameter of biaxial loading of the plate ε = 0.5 to ε = 0 significantly increases the area of the

plastic zone. As the nominal stress σnom becomes larger, the area of the plastic zone in the case of uniaxial tension

(ε = 0) increases faster than in the case of biaxial loading (ε = 0.5).

Earlier, the radius of the plastic zone at the defect tip was estimated by using the formula for the stress

in the vicinity of the crack. The obtained approximate formulas along with the von Mises criterion allow us to

estimate the sizes of the plastic zones near the tip of the defect with an elliptical contour. The plastic zone radii

calculated by the formulas for the crack and the ellipse with the parameter m = 0.9 have different values in different

directions. In the case of the central elliptic defect, the difference in the radii ranges from 7 to 20%, wherein the

smallest difference occurs on the axis of the defect.

3. MAXIMUM SHEAR STRESS IN THE CASE OF A CRACK-LIKE DEFECT

UNDER BIAXIAL LOADING OF A PLATE

Using expressions (1.3)–(1.7), we write the formula for the maximum shear stress τmax near the tip of the

elliptical defect:

τ2max =
( KI√

2πr

)2

F1 +
σKI√
2πr

F2 + σ2F3. (3.1)

It follows from Eq. (3.1) that the positions on the line level τmax depends on the biaxial loading parameter ε, cut

curvature radius ρ, and stress σ.

In the case of a straight-line crack (m = 1), formula (3.1) for τmax corresponds to the theoretical results [4]

and is used to determine KI from isochrome patterns by the photoelasticity method.

Figure 3 shows the dependence of the ratio of the maximum shear stress for a plate with an elliptic cutout

at θ = 0 to the maximum shear stress for a crack at the same defect length (the crack length is equal to the length

of the major axis of the ellipse: 2l = 2a) at a distance from the crack tip equal to 0.07a on the ellipse parameter m.
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Fig. 3. Maximum shear stresses versus the ellipse parameter m for ε = 0 (1) and 0.5 (2).

4. STRESS TENSOR COMPONENTS IN THE POLAR COORDINATES

FOR A DEFECT OF THE FIRST TYPE

UNDER BIAXIAL LOADING OF A PLATE

The stress tensor components in the polar coordinates can be found by transforming expressions (1.3)–(1.5)

for the stresses σx, σy , and τxy. After a series of transformations, we write the expressions for the stress tensor

components with regular terms in the case of the elliptic defect in the polar coordinates as functions of the cut

curvature radius ρ and the parameter of biaxial loading of the plate ε:

σr ≈ − DKI√
2πr

ρ

2r
cos

(θ
2

)
+

KI

4
√
2πr

(
5 cos

(θ
2

)
− 17m2 + 6m− 15

8m
cos

(3θ
2

))

−
(2r
ρ

)−1/2

D3/2σ(1 + ε) cos
(3θ
2

)
− T

((1 +m

2m

)2

cos2 θ −
(1−m

2m

)2

sin2 θ
)
; (4.1)

σθ ≈ DKI√
2πr

ρ

2r
cos

(θ
2

)
+

KI

4
√
2πr

(
3 cos

(θ
2

)
+

17m2 + 6m− 15

8m
cos

(3θ
2

))

+
(2r
ρ

)−1/2

D3/2σ(1 + ε) cos
(3θ
2

)
− T

((1 +m

2m

)2

sin2 θ −
(1−m

2m

)2

cos2 θ
)
,

τrθ ≈ DKI√
2πr

ρ

2r
sin

(θ
2

)
+

KI

4
√
2πr

(
sin

(θ
2

)
+
17m2 + 6m− 15

8m
sin

(3θ
2

))
−
(2r
ρ

)−1/2

D3/2σ(1+ε) sin
(3θ
2

)
+TH sin 2θ.

5. STRAIN STATE AT THE TIP OF A CRACK-LIKE CUT

UNDER BIAXIAL LOADING OF A PLATE

The elastic strains in the cut region are determined by using formulas (1.3)–(1.4) for the case of a plane

stress state (σz = 0) based on Hooke’s law:

εx =
1

E

(
− KID(1 + μ)√

2πr

ρ

2r
cos

(3θ
2

)
+

KI

4
√
2πr

(A1 − μB1)

− (1 + μ)
(2r
ρ

)−1/2

D3/2σ(1 + ε) cos
(θ
2

)
− σ(1 − ε)

((1 +m

2m

)2

+ μ
(1−m

2m

)2))
,
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εy =
1

E

(D(1 + μ)√
2πr

ρ

2r
KI cos

(3θ
2

)
+

KI

4
√
2πr

(B1 − μA1)

+ (1 + μ)
(2r
ρ

)−1/2

D3/2σ(1 + ε) cos
(θ
2

)
+ σ(1 − ε)

((1−m

2m

)2

+ μ
(1 +m

2m

)2))
,

εz =
2μ

E

( KI√
2πr

cos
(θ
2

)
− σ(1− ε)

2m

)
, γxy =

τxy
G

.

Here G = E/(2(1 + μ)) is the shear modulus, E is Young’s modulus, and μ is Poisson’s ratio.

6. DETERMINATION OF THE STRESS INTENSITY FACTOR

FOR A CRACK-LIKE DEFECT BY THE HOLOGRAPHIC INTERFEROMETRY METHOD

Doyle et al. [10] determined the effect of the curvature radius ρ at the cut tip and analyzed the errors in

the calculation of KI in the plate on the basis of the formulas obtained in [1]. Etheridge and Dalley [9] overviewed

the Irvine, Bradley–Kobayashi, and Smith methods of using the two-parameter photoelasticity to determine the

experimental values of KI under biaxial loading of the plate with a central crack on the basis of isochrome patterns.

The holographic interferometry method was used in [11] to study the stress state, the formulas [1] were used to

calculate the stress intensity factor KI in a plate with a crack-like defect, and the experiment was described. In

accordance with von Neumann’s theory and Hooke’s law, assuming that strains are small, we have a relationship

for thin plates between the numbers of interference fringes on the patterns of absolute path differences (APDs) and

the principal stresses σ1 and σ2 in the form of Favre’s relations [12]:

N1 = aσ1 + bσ2, N2 = bσ1 + aσ2, (6.1)

where N1 are N2 are the fringe numbers in the APD patterns with vertical and horizontal polarizations of the

reference beam, respectively; a = 0.625 fringes/MPa and b = 0.453 fringes/MPa are the optical constants of the

ED-20MPGFA material. For an elastic material, Ostsemin et al. [13] described a calibration method providing

high accuracy of determining the constants a and b by using all the observed interference fringes and applying

interpolation operations for determining the fringe numbers. The APD patterns may be conveniently processed

along the axis of the crack-like defect at θ = 0 (the largest number of interference fringes). In the case of σ1 = σy ,

σ2 = σx, and τxy = 0, Eq. (2.1) yields:

σ1,2 =
KI√
2πri

(
1±

(
D

ρ

2ri
+

2A− 1

4

))
− σ

(1− ε

2m
∓
(
(1 + ε)D3/2

( ρ

2ri

)1/2

+ (1 − ε)
H

2

))
. (6.2)

The difference of experimental and theoretical values of σ1 is about 6%.

Earlier, calculations were performed by using the formula for the SIF for cracks. In this paper, we obtained

formulas for the SIF for an elliptic cutout in a plate, which generalize the formulas for cracks. At m = 0.97, the

difference of the present SIF values from the SIF calculated for the case of a linear cut (crack) is more than 10%.

Substituting Eq. (6.2) in Eqs. (6.1), we obtain formulas for the interference fringes with the numbers N1i:

N1i =
KI√
2πri

((a+ b) + (a− b)B)− σ
( (1− ε)(a+ b)

2m
− (a− b)C

)
. (6.3)

Here

B = D
ρ

2ri
+

17m2 − 2m− 15

32m
, C = (1 + ε)D3/2

( ρ

2ri

)1/2

+ (1 − ε)
H

2
.

From Eq. (6.3), we have

KIi =
√
2πri

N1i + σ((1 − ε)(a+ b)/(2m)− (a− b)C)

(a+ b) + (a− b)B
. (6.4)

Using the results obtained and formula (6.4), we calculate the value of Kexp
I = 25.89 MPa ·mm1/2, which agrees

with the calculated value Kcalc
I = 24.88 MPa ·mm1/2 with a 4% error. It is known that the SIF value in the case

of tension of a finite-size plate with a central crack-like defect is [2, 5]

KI = σnom
√
πl f1. (6.5)
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Here l is the half-length of the defect and f1 is the correction function depending on the sample geometry and the

loading type.

Equating the right sides of Eqs. (6.4) and (6.5) and taking into account that σ = σnom, we obtain expressions

for the correction function f1i depending on N1i and N2i:

f I
1i =

√
2ri
l

N1i + σnom((1− ε)(a+ b)/(2m)− (a− b)C)

σnom((a+ b) + (a− b)B)
; (6.6)

f II
1i =

√
2ri
l

N2i + σnom((1− ε)(a+ b)/(2m) + (a− b)C)

σnom((a+ b)− (a− b)B)
. (6.7)

Validation of Eqs. (1.4) for σy, (6.4) for the SIF KI, (6.6) for the correction function f I
1i, and (6.7) for f II

1i was

performed by the holographic interferometry method [11]. The experiments were carried out for a plate 100 mm in

width and 3.83 mm in thickness with a central elliptic hole of length of 30 mm and radius ρ = 0.15 mm, which was

subjected to uniaxial loading (ε = 0) under the nominal stress σnom = 3.28 MPa.

Using the patterns of N1i with formula (6.6) in the case of vertical polarization of the reference beam and

the patterns of N2i with formula (6.7) in the case of horizontal polarization of the reference beam, we find the values

of the correction functions f I
1i and f II

1i. The values of f I
1i and f II

1i in Fig. 4 are extrapolated by straight lines.

The experimentally obtained values f I
1 = 1.15 and f II

1 = 1.14 are greater than f1 = 1.06 obtained by the

Feddersen formula [5]. This is due to the presence of regular terms in formulas (6.6) and (6.7) because of accounting

for the second term in the Williams representation [3] of the stress tensor components [4, 5, 7].

We obtain approximate formulas for the stress tensor, which take into account the curvature of the defect

as well as singular and regular terms of expansion, while previously only singular terms were accounted for. When

estimating the maximum principal stress at the defect tip significantly affecting the fracture criteria, the difference

of the values obtained by the formulas for the crack and the ellipse is over 50%. At a distance from the defect tip,

equal to 10 curvature radii, the above-mentioned difference along the major axis of the defect is greater than 10%.

If regular terms are omitted in the formulas for the stresses, there may be errors in the calculation of

structures with crack-like defects and their brittle fracture.

Formula (6.1) for the principal stresses σ1 and σ2 is used to obtain a formula for determining the stress

intensity σi from APD patterns [13]:

σ2
i =

(a2 + ab+ b2)N2
1 − (a2 − 4ab+ b2)N1N2 + (a2 + ab+ b2)N2

2

(a2 − b2)2
. (6.8)

Figure 5 shows the dependences of the stress intensity σi on the distance r, which were calculated by formula (6.8)

(points) and formula (2.2) (curve). The difference of the values obtained is 10%.

Figure 6 shows the dependences of the difference between the principal stress intensities σ1 − σ2 on the

distance r calculated by formula (1.7) (curve) and relations (4.1) (points).
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Fig. 5. Experimental (points) and theoretical (curve) dependences of the stress intensity σi on the
distance from the defect tip.

Fig. 6. Experimental (points) and theoretical (curve) dependences of the difference between the
principal stresses σ1 − σ2 on the distance from the defect tip.

The results of the theoretical studies performed in this paper agree with the experimental data [14] for

ferrite–pearlite steels and using the model of brittle fracture [15].

Ostsemin and Utkin [16] used exact formulas to study the effect of regular terms on the stress–strain state

(σ1, σi, and SIF) under biaxial loading of a plate with an inclined elliptic cutout.

CONCLUSIONS

In this paper, the formulas for the stress tensor components, the principal stresses, the stress intensity, the

maximum shear stress, and the sum and difference of the principal stresses with regular terms for a crack-like defect

with a curvature radius ρ under biaxial tension of a plate were obtained.

The holographic interferometry method was used to obtain the experimental values of the stress intensity σi

and the stress difference σy − σx as well as the coefficients for the correction functions used to calculate the SIF.

In the case of a central elliptical hole with a curvature radius ρ = 0.15 mm, the experimental values of σ1,

σi, and KI determined by the holographic interferometry method agree with the calculated values with an error of

6, 10, and 4%, respectively.
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