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1. INTRODUCTION

Celebrated Jones polynomial  discovered in
1984 by V. Jones [1] is a one-variable polynomial
invariant of knots and links. It was originally defined
with skein-relations, which offer a constructive
method of calculation of Jones polynomials. Skein
relations (1) connect Jones polynomials of three knots
that differ in one crossing (2):

(1)

(2)

Shortly after the definition of Jones polynomial
two important discoveries were made by E. Witten and
N. Reshetikhin and V. Turaev. E. Witten [2] found a
quantum field theory—Chern–Simons theory with
gauge group —that allowed one to construct
observables (Wilson loop averages) that coincide with
Jones polynomials; i.e., he offered a physical defini-
tion of a mathematical object. N. Reshetikhin [3] and
V. Turaev [4] on the other hand discovered a new
method of calculation of knot invariants with special
operators called -matrices. They connected Jones
polynomials with universal -matrix in fundamental
representation of quantized universal enveloping alge-
bra . The Reshetikhin–Turaev (RT) method
also allowed to define colored Jones polynomials cal-
culated with -matrices in other representations of

.

These results were later generalized to HOMFLY-
PT polynomials [5, 6], Chern–Simons theory with
gauge group  and universal -matrix in represen-
tations of .

 is an associative algebra with generators ,

,  ( ) that satisfy the relations

(3)

The universal -matrix is the following:

(4)

where ,  are positive roots,

, and 

.
Chern–Simons theory is the three-dimensional

quantum field theory with the action

(5)

Nonzero correlators in Chern–Simons theory are
Wilson loop averages, which are correlators of a spe-
cial type. When the gauge group of the theory is ,
they coincide with HOMFLY-PT polynomials

(6)

They depend on a contour  (a knot or a link), the
rank  of the gauge group , its representation
(corresponding to a Young diagram) R, on quantum
dimension  and the Chern–Simons coupling
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Fig. 1. Correspondence between the invariants at roots of
unity.

Fig. 2. Different types of crossings and turning points.
constant k. This average is a polynomial in variables

 and . It was shown [7] that

Chern–Simons theory is gauge invariant when the
coupling constant k is an integer, which means that q
is a root of unity. That is why invariants at roots of
unity attract additional attention.

The obvious approach to get invariants at roots of
unity is to substitute variables in HOMFLY-PT

 and Jones  polynomials.

There also exist the invariant  defined by
R. Kashaev [8–10] with -matrix that depends on a
variable ω (that is a primitive Nth root of unity) and an
integer parameter m. The Kashaev invariants are not
connected with quantum algebras, but they coincide
with colored Jones polynomials.

Another possibility to construct invariants at roots
of unity emerges when we consider representations of

 when the parameter of quantization is a root
of unity. In this case new types of representations with
parameters λ emerge, which allow one to construct

-matrices with parameters and to define new invari-
ants of knots and links at roots of unity. The resulting
invariants are ADO [11] or colored Alexander inva-
riants [12]  for . In this case, q is
2mth root of unity and λ is an arbitrary parameter.
ADO invariants coincide with Alexander polynomials

 when q is the fourth root of
unity. They are also connected with Jones polynomi-
als.

The new result that we want to highlight in this
work is the generalization of ADO invariants to

. These are the invariants  (29) [13]
of knots and links, which are associated with nilpotent
representations with parameters of  at roots of

unity ( ). They depend on a set of parameters
 and are connected with Alexander and

HOMFLY-PT polynomials. ADO invariants and
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invariants  are defined with the modified
version of the RT method, which requires the intro-
duction of a special normalization coefficient (27) that
we present in this work.

The schematic correspondence between invariants
described above is shown in Fig. 1.

The aim of this work is to clarify the definition of
different invariants at roots of unity and establish rela-
tions between them. The structure of the work is the
following. We start with the RT method (Section 2)
that is used to define all invariants considered in this
work. Then we discuss the representation structure of

 for different values of q (Section 3). We define
ADO invariants (Section 4) and their generalization
(Section 5) and discuss the modifications of the RT
method that are necessary in order to define them.
Finally, we consider the notion of long knots and
define Kashaev invariant (Section 6). The new results
that we present in this work are in Section 5.

2. RESHETIKHIN–TURAEV METHOD
The RT method [9, 14, 15] allows one to define

colored invariants of knots and links [16], [17]. There
are also modifications of this method that allow to
conduct the calculations more efficiently in some
cases [18, 19]. In this section we discuss the most gen-
eral version of the RT method and follow the descrip-
tion from [15].

The RT method is based on the use of a two-
dimensional oriented projection of a knot or a link on
a plane with a fixed direction, which is a diagram of a
knot or a link. The diagram shows which thread is
above the other in each crossing. Then a diagram is
broken down into the elements that play the role in the
construction of knot invariant: crossings and turning
points (relative to the selected direction). There are
eight types of crossings and four types of turning
points (Fig. 2).

All turning points and crossings can be expressed
just with the operators , , and :

(7)
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Fig. 3. Reidemeister moves.

Fig. 4. Diagrams of the Hopf link and trefoil knot in the
braid form.
Operators ,  and  satisfy the equations that
come from Reidemeister moves (Fig. 3):

(8)

(9)

where , , , and I
is the identity operator. Equations (8) and (9) fix only

 and  operators, so there is some freedom in defi-
nition of  and . Different choices of operators 
and  can produce different types of invariants. Col-
ored Jones and HOMFLY-PT polynomials are associ-
ated with universal -matrix (4) in representations of

 and , respectively, ADO invariants and
their generalization are associated with universal -
matrix in nilpotent representation with parameters of

 and  at roots of unity. The Kashaev
invariant is based on a different -matrix (37).

The coefficient  in Eq. (8) is called the framing
coefficient. It emerges when we consider a knot made
out of a ribbon. In this case the first Reidemeister
move resolves with a coefficient. In topological fram-
ing, which we use in definition of ADO invariants,
matrices  and  satisfy the equation:

(10)

The polynomial invariant of a knot or a link is defined
as a contraction of all operators associated with ele-
ments of a particular diagram.

If we choose universal -matrix calculated for
representation R of , this method gives us

unreduced HOMFLY-PT polynomial . We can
also define reduced polynomials ,
where  is the unreduced polynomial of unknot.

It is convenient to use diagrams of knots and links
in the form of braids (Fig. 4), that exist for any knot or
link. In this case the definition of invariants can be
reformulated in terms of Markov trace  (quantum
trace) and operator , which is known as the
weight matrix.

(11)

where s is a number of strands in a braid, the product
includes all crossings in the braid.

R M M

Ω⊗2Tr ( ) = ,I q IW R

1 2 1 2 1 2= ,RR R R RR

⊗1 = IR R ⊗2 = IR R =W MM

R W

M M R

W

R

2( )q slU ( )q NslU

R

2( )q slU ( )q NslU

R

Ωq

R W

⊗2Tr ( ) = .I IW R

R

( )q NslU

R
K

H

�= /R R RH K K
H H

�

RH

Tr q

=W MM

⊗ ⊗∏ ∏
���������

…= Tr = Tr ,
s

R q i i
i i

K
H R W W R
JETP LETTERS  Vol. 116  No. 3  2022
3. REPRESENTATIONS OF  AT ROOTS 
OF UNITY

 is generated by elements e, f,  and

 that satisfy the relations

(12)

The universal -matrix is the following

(13)

and the corresponding weight matrix coincides with
operator k: .

When q is not a root of unity the irreducible finite
dimensional representations  of the algebra 
are symmetric representations enumerated with
Young diagrams that consist of one row .  are the
representations with the highest and the lowest
weights, which act on a vector space  of dimension

 with basis vectors , , where  and
 are the highest and lowest weight vectors, res-

pectively,

(14)

where  is a quantum num-
ber and  is the Kronecker delta. In this case the high-

est weight  is fixed . The condi-
tion that fixes the weight emerges when one builds a
Verma module starting with an eigenvector  of oper-
ator k that satisfies . One gets the other vectors
of the Verma module acting on  with the operator f:

, , , . Then we look for
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Fig. 5. (1, 1)-tangles of the Hopf link and trefoil knot.
an invariant subspace with the condition ,
which is the following:

(15)

This condition fixes the weight λ only if ,
which means that when q is a root of unity, there exist
representations, where the weight is arbitrary.

Let q be a primitive root of unity of degree ,
which means that there is no  so that . In
this case operators ,  and  are central, which
comes directly from the defining relations (12). The
centrality of  results in the fact that the weight of
representations of dimension m is not fixed and is a
parameter of representations. The fact that  and 
are central is the reason why new types of representa-
tions emerge in this case: cyclic and semicyclic.

There are four types of irreducible representations
(any irreducible representation of  is finite-
dimensional at roots of unity):

(1) representations  (14) for ;

(2) cyclic ;

(3) semicyclic  or ;

(4) nilpotent representations .
The last three representations have the same

dimension m and can be described with the following
operators acting on a m-dimensional vector space 
with basis , ,

(16)

where a, b, and  are arbitrary complex numbers.
One can check that these operators satisfy the defining
relations (12) of .

Representations  produce non-trivial -matri-
ces and allow one to define invariants of knots and
links that are known as ADO or colored Alexander
invariants.

4. ADO OR COLORED ALEXANDER 
INVARIANTS

ADO invariants of links were defined by Akutsu,
Deguchi, and Ohtsuki [11]. ADO invariants of knots
and links can be defined with the RT method, which is
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applied to -tangles—knot and links with one cut
line (Fig. 5). The consideration of tangles instead of
knots and links is possible because of the existing one-
to-one correspondence between them [20]. It is an
important step that allows one to calculate nonzero
invariants. Invariants, that are calculated with knots
and links directly are all equal to zero, because of the

properties of Markov trace in representations .

Let us now define ADO invariants. Two important
modifications of the RT method have to be made.
First of all, we have to redefine Markov trace in the
following way:

(17)

i.e., omit one weight matrix, that is associated with a
cut line. Then the normalization coefficient of poly-
nomials (unreduced polynomial of unknot) equals a
classical dimension of a representation.

This procedure makes one choose the line to cut
and brings asymmetry into the definition of the invari-
ant. That is why one also needs to introduce a normal-
ization coefficient. The coefficient that was calculated

in [11] up to normalization coefficient  is the fol-
lowing

(18)

where ,  is a color of an open compo-
nent.
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Now we can define ADO invariant :

(19)

In this definition  is the universal -matrix, cal-
culated for representation  of  at roots of

unity. In general, it depends on two colors 

and :

(20)

and

(21)

ADO invariants  are connected with Alexander
and Jones polynomials. For simplicity let us define
ADO polynomials of knots and one-colored links:

(22)
then

(23)
i.e., ADO polynomials for fourth root of unity coin-
cide with Alexander polynomials of knots and ADO
invariants for fourth root of unity coincide with multi-
variable Alexander polynomials of links 

(24)
and that is why ADO invariants are also called colored
Alexander invariants.

The connection with Jones polynomials is the fol-
lowing:

(25)

where  are reduced Jones polynomials in rep-
resentation . It follows from the fact that represen-
tations  coincide with representations  when
we choose the correct value of the weight .

Recent study by S. Willetts [21] showed that ADO
invariants and colored Jones polynomials can be gen-
eralized with the unified knot invariant that contains
both invariants: ADO and Jones. And there exists a
map that allows one to get ADO invariants from col-
ored Jones polynomials.
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5. GENERALIZATION OF ADO INVARIANTS 
TO 

Jones polynomials were generalized to HOMFLY-
PT, and similarly ADO invariants can be generalized
to invariants  associated with representations
of  (3) at roots of unity.

Let q be a primitive root of unity of degree . In
this case the representation structure of  [22] is
very similar to representation structure of , that

we discussed before. The operators  are central and

there exist nilpotent representations  of dimen-

sion  with  parameters  and arbitrary
weights. There are also cyclic and semicyclic represen-
tations because  and  are central, but these rep-
resentations do not produce non-trivial invariants of

knots and links [13]. Representations  are associ-
ated with non-trivial invariants that we denote

.

The definition of invariants  repeats the
definition of ADO invariants. We color components of

a link with l representations  ( ) with
sets of parameters  ( ), make a projec-
tion of the link and cut one line of the projection. We
then apply RT method to (1, 1)-tangles and get poly-
nomials . As the operators  and  in the
RT method we use the universal -matrix (4) and the

operator , calculated for representations . The
operator  is the following:

(26)

We also need to normalize the polynomials
 in order to restore the symmetry between all

threads in a link. If the color of an open component is
 (Fig. 6) the normalization coefficient  is

the following:

(27)

where α are positive roots  of , 
( ), where  are simple roots of ,

. Definition of  repeats the definition
of normalization coefficient of ADO invariants (18):
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Fig. 6. Colored (1, 1)-tangle corresponding to the Hopf
link.
Now we can define invariants  at roots of

unity with parameters  ( ,
,  is the number of components in a link),

 is the color of an open component:

(29)

Invariants  coincide with HOMFLY-PT
polynomials in representations  corresponding to
the Young diagrams 

 when the parameters  coincide with the
highest weights of representation :

(30)

They are also connected with Alexander polynomials,
but these connections are not as simple as in case of
ADO invariants. They are listed in [13]. For example,
for :

(31)
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Invariants  coincide with ADO invariants

 when .
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6. KASHAEV INVARIANT

There exists another type of knot invariant, defined
specifically for a root-of-unity variable, which is not
based on representations of quantum algebras. In this
section, we discuss the Kashaev knot invariant .

The Kashaev invariant of knots was defined by
Rinat Kashaev in [10] for long knots. It is based on

-matrix, obtained from solutions of pentagon iden-
tity, which depends on a root-of-unity variable ω and
two integer spectral parameters (m and n) that are
associated with two colors of two strands in a crossing.
For the definition of the invariant Kashaev uses the
RT method applied to -tangles, which are two-
dimensional projections of long knots. Long knots are
3-dimensional analogs of (1, 1)-tangles. By definition
long knot is an embedding f:  and there exist
a,    such that  for any  or .
Calculating invariants of long knots allows to avoid the
problem with normalization coefficient.

The steps to define the Kashaev invariant are the
following. First of all, we fix a primitive root of unity
ω of order N, color the threads with integer numbers

: , make a two-dimensional projection,
place -matrices and turning point operators accord-
ing to the rules below and sum over all indices (the
invariance of the resulting sum was shown in [9]).

(33)
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As said above, to define the Kashaev invariant we

base our calculations on (1, 1)-tangle and it is a matrix
invariant, which is equal to identity matrix 
multiplied with Jones polynomial colored with
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-dimensional representation  (14) (corre-
sponding to the Young diagram ) evaluated at a
point :
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This result is the conjecture based on calculations of
different examples. Even though Kashaev constructed
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-matrix that is not based on representations of
 the resulting polynomial coincides with Jones

polynomial.

7. CONCLUSIONS

In this work, we have considered different invari-
ants of knots and links at roots of unity. Among them
are colored Jones and HOMFLY-PT polynomials (11)
evaluated at roots of unity, ADO or colored Alexander
invariants and their generalization and the Kashaev
invariants.

All these invariants can be defined and calculated
with the RT method; however, to define invariants at
roots of unity, one needs to modify the RT method:
consider (1, 1)-tangles instead of knots and links and
introduce the normalization coefficient (18), (27).

We defined ADO or colored Alexander invari-
ants (19). They depend on a root-of-unity variable and
correspond to nilpotent representations with parame-
ters of  at roots of unity. They are connected
with Jones (25) and Alexander (22) polynomials and
according to the recent study are equivalent to Jones
polynomials [21].

We also discussed Kashaev invariants, that are
defined with -matrix with integer parameters that
depends on a root-of-unity variable and is not defined
with representations of . The resulting polyno-
mial conjecturally coincides with colored Jones poly-
nomial (39).

This work also contains a brief summary of defini-
tion of invariants  (30) that are the general-
ization of ADO invariants. They are a new type of
invariants, defined for nilpotent representations with

parameters  of  at roots of unity. They are
connected with HOMFLY-PT (30) and Alexander
polynomials (31) and (32) [13]. The question remains
whether these invariants are independent or they are
equivalent to colored HOMFLY-PT polynomials.
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