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A simple fundamental modification of quantum key distribution protocols has been proposed: it is not
required to protect the results of avalanche detectors from an eavesdropper, but all cryptographic properties
of a protocol hold.
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1. INTRODUCTION

To guarantee the security of quantum key distribu-
tion, it is fundamentally important to prevent the
access of an eavesdropper to the transmitting and
receiving devices. Bits of the key on the receiver side
are obtained from photocounts of single-photon ava-
lanche detectors, which should be inaccessible to the
eavesdropper, which requires certain measures to pro-
tect detectors from information leakage at the detec-
tion of quantum states.

The eavesdropper (Eve) can know in which of the
detectors a count occurs even without direct access to
the detectors. Detecting back-flash emission from
detectors to the communication channel, the eaves-
dropper can get information of the bits of the key,
remaining undetected.

This particularly concerns quantum key distribu-
tion systems involving superconducting detectors.
Because of the use of large “dry” cryostats, detectors
are located beyond the main receiver device and are
connected to it through a fiber and electric cables. For
this reason, it is quite difficult to ensure their complete
guaranteed isolation from the environment.

In this regard, there is a fundamental question: Can a
quantum key distribution system where detectors are gen-
erally accessible and are even located beyond the main
instrument and results are accessible to the eavesdropper
guarantee the cryptography security of keys? 1

The positive answer to this question is given in this
work.

We consider below the BB84 protocol [1] in the
standard point–point configuration involving phase
encoding in optical fiber systems. Two bases, direct +
and conjugate ×, and two states corresponding to 0
and 1 in each basis are used in the protocol.

Alice on the transmitter side randomly chooses a
basis and a state in it by choosing the relative phase in
two pulses of the states. Four phases are generally
used. In the + basis, the logical bits 0+ and 1+ corre-
spond to the phases ϕA = 0 and π, respectively. In the
× basis, the bits 0× and 1× correspond to the phases
ϕA = π/2 and 3π/2, respectively.

In the standard version of the protocol, Bob on the
receiver side chooses only two phases ϕB = 0 and π/2
corresponding to the + and × bases, respectively.

Alice and Bob hold only messages where their
bases coincide. On the receiver side, states from the
communication channel after passage through a
Mach–Zehnder interferometer [2] reach the
detectors. The probabilities of a count in detectors U

and D are proportional to  and

, respectively (Fig. 1). When the bases

coincide, if Alice sends 0+, a count occurs only in the
detector U because interference is constructive on the
detector U and is destructive on the detector D. If Alice
sends 1+, a count occurs in the detector D, whereas
a count is absent in the detector U.

Similarly, in the × basis, the states 0× and 1× initi-
ate a count in the detectors D and U, respectively.

Since bases (not states in a basis) are opened after the
transfer of states, if the eavesdropper had access to detec-
tors and knew which of the detectors recorded a count, the

1 To avoid misunderstanding, we note that the consideration
below concerns the standard point–point configuration rather
than twin-field quantum cryptography systems (see below).
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Fig. 1. Schemes of the quantum key distribution for (a) a
modified protocol with untrusted detectors and (b) a twin-
field protocol. The probabilities of a count in detectors U

and D are proportional to  and

, respectively.
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eavesdropper would know the entire transferred key. For
this reason, detectors in the standard quantum key distri-
bution systems should be protected; i.e., both the direct
and indirect access of the eavesdropper should be
excluded.

2. INFORMAL REASONS FOR THE SECURITY 
OF A MODIFIED PROTOCOL

Below, we describe a modified protocol with
untrusted detectors and discuss informal reasons for
the security of the new protocol.

The idea is a random choice of four rather than two
phase values, two in each basis, on the receiver side.
The phases and the corresponding detectors where a
count occurs have the form
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In each basis, e.g., in the + basis, if Alice sends 0 (ϕA =
0), depending on the random choice of phases by Bob
(ϕB = 0 or π), which is unknown to Eve even after the
opening of bases, Eve, who does not know Bob’s
phase, will “see” a random count in one of the detec-
tors U or D for each bit 0 or 1 (see Eqs. (1) and (2)).
The procedures for other states are similar.

Thus, additional randomness introduced by Bob in
each basis, which is unknown to Eve, makes it possible to
open counts in detectors for Eve, but she will not know the
transmitted key bit.

The possibility of access to detectors for Eve can be
illustrated in terms of information theory.

In the standard protocol, Alice chooses a basis and
a bit in this basis that are unknown to Eve. Bob
chooses only a basis that is also unknown to Eve. Con-
sequently, before the opening of the bases, Eve does
not know three bits of information. When the bases are
opened, Alice and Bob each open one bit of informa-
tion. As a result, one of three bits remains unknown to
Eve. This bit is a common secret of Alice and Bob.
Knowing the basis, Bob obtains this bit through a
count in a detector.

In the modified protocol, Alice has two bits of
information unknown to Eve before opening of the
bases. Bob also has two bits of information before
opening of the bases. When the bases are opened,
Alice and Bob each open one bit of information. Two
bits remain unknown to Eve. If access to counts in
detectors is allowed to Eve, she receives one bit of
information after a count in a detector. As a result, one
bit of information remains unknown to Eve and is
present in a key. Bob also knows a detector where a
count occurs, but Bob also knows his choice of the
phase and, thus, can identify a bit sent by Alice. Eve
does not know the phase chosen by Bob and knows
only a count in a detector in a given basis. Observing
only the count in the detector and knowing the basis,
Eve cannot know the bit transmitted by Alice because
she does not know the phase by Bob.

It is interesting to compare our protocol with the
actively developed twin-field protocol [3, 4],2 where
the detectors are also untrusted and accessible (open)
to Eve.

In the twin-field protocol (see Fig. 1), Alice and
Bob independently and equiprobably choose two
phases in each of the two bases, e.g., in the + basis,
0 → ϕA = 0 and 1 → ϕA = π for Alice and 0 → ϕB = 0
and 1 → ϕB = π for Bob. Since the interference signals
on the detectors U and D are proportional to

 and , respectively, the

count occurs in the detectors U and D at the identical

2 The idea of interference of states from different sources in quan-
tum key distribution was proposed as early as in 1997 in [5]; this
system was called quantum key distribution based on a quantum
computer.
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and different phases, respectively. The detectors are
accessible to the eavesdropper.

Alice generates two bits of information unknown to
the eavesdropper: one bit for the choice of the basis
and the second bit for a logical 0 or 1 in the basis. Bob
also generates two bits of information unknown to Eve.
When the bases are opened, Alice and Bob each open
one bit of information. Two of four bits remain
unknown to Eve. After the count in the detector U or
D, Eve gets one bit of information. One bit of informa-
tion remains unknown to Eve and is a common secret
of Alice and Bob.

Unlike Eve, knowing the count of the detector and
which bit they send, Alice and Bob obtain a common
bit. For example, if both Alice and Bob send 0, the
count occurs in detector U. Such an event takes place
if Alice and Bob send identical bits (each of them
knows the sent bits). Consequently, preliminarily
making an agreement, Alice and Bob will have the
common bit 0. If both Alice and Bob send 1, the count
also occurs in detector U, and Alice and Bob will have
the common bit 1. Eve observes only the count in the
detector U and does not know the common bit
because the count in the detector U can occur from
both bits 0 and 1 sent by Alice and Bob.

This is an informal information-theory reason for
obtaining the common secret bit by Alice and Bob.

3. FORMAL PROOF OF SECURITY
The main idea in the formalization of untrusted

detectors accessible to Eve is to reduce the new proto-
col to an equivalent protocol involving the standard
BB84 protocol with the delivery of additional quan-
tum states carrying information on the count in one of
the two detectors to Eve.

We consider the standard BB84 protocol. Obtain-
ing a count, 0 or 1 correct or incorrect, in detectors in
each basis, which are inaccessible to Eve, Bob reports
this result to Eve, randomly and equiprobably inter-
changing the detectors U and D. In particular, if the
count occurs in the detector U, Bob randomly and
equiprobably chooses the detector U or D and reports
his choice to Eve.

This procedure is equivalent to the modified proto-
col where Bob randomly chooses one of two phases in
each basis leading to the random permutation (for
Eve) of counts in the detectors U and D.

Further, we consider a single-photon case with the
identical quantum efficiencies of the detectors to avoid
excess technical details. The nonequal quantum effi-
ciencies of detectors can be taken into account by the
method presented in [6, 7].

Thus, it is sufficient to consider the BB84 protocol
supplemented by information for Eve concerning the
random permutation of the detector where the count
occurs. Because the situation is symmetric in the
bases, it is sufficient to consider the situation in one
basis, e.g., in the + basis. The results in the × basis are
obtained by the unitary transformation of information
states.

We use the EPR version of the protocol (see details
in, e.g., [6]). Alice prepares the EPR state, i.e., her
subsystem X, and stores it on her side as a reference
subsystem and sends the subsystem Y to Bob. The sub-
system Y in the quantum communication channel is
attacked by Eve. Alice carries out measurements in the
basis X; in this process, a state corresponding to 0 or 1
appears randomly and equiprobably. After the mea-
surement, Bob’s subsystem Y is transformed to a state
corresponding to 0 or 1 because of the structure of the
EPR state. The EPR state has the standard form

(3)

Since the EPR state has the same structure in both +
and × bases, the index of the basis is omitted.

Any transformation of the input quantum state to
the output state is described by the action of a super-
operator, which is a completely positive map [8]. Any
superoperator is representable unitarily (see details in
[9]). This means that any superoperator is imple-
mented by entangling the input state with an auxiliary
state  by means of the unitary operator UBE, which
is determined by Eve.

Eve’s attack described by the unitary operator UBE
gives

(4)

States of Eve are normalized; for this reason, the coef-
ficients are taken in the form  and Q to preserve
normalization. As shown below, Q is the error proba-
bility on the receiver side.

Alice and Bob perform measurements in the iden-
tical bases and , respectively. Taking
into account Eqs. (3) and (4), the resulting Alice–
Bob–Eve state is described by the density matrix

(5)

As previously shown (see, e.g., [6]), the states
 and  for Eve’s optimal

attack lie in orthogonal subspaces and
. Optimality means
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that Eve obtains maximum information on the trans-
mitted key at the observed error Q on the receiver side.

Formula (5) has a simple interpretation. Alice
sends 0 or 1 with a probability of 1/2. Bob obtains a
correct count with a probability of  and Eve has
the state . Bob obtains an erroneous count with a
probability of Q and Eve has the state , similar to
the case where Alice sends 1.

4. MODIFICATION OF THE PROTOCOL
Let Bob obtain 0 (correct or erroneous), i.e.,

observe the count in the detector U. Bob reports ran-
domly and equiprobably one of the orthogonal states

 and  to Eve; i.e., Eve receive the density
matrix

(6)

Thus, when Bob records count 0 (count in the upper
detector), state (6) is delivered to Eve. Measuring
state (6), Eve identifies the detector U or D equiprob-
ably according to Eqs. (1) and (2).

Similarly, if Bob observe count 1 in the detector D
(correct or erroneous), measuring state (6), Eve
observes the state U or D equiprobably.

As a result, the density matrix  is replaced by

(7)

5. KEY LENGTH, UNTRUSTED DETECTORS
According to [10], the length of the secret key in the

asymptotic limit of a long sequence (this limit is con-
sidered to avoid lengthy technical details; a finite
length of transmitted sequence can be taken into
account in the way proposed in [7]) is given by the
expression

(8)

Here,  is the lack of information in bits on
Alice’s reference bit string X to Eve under the condi-
tion that Eve has quantum systems , and

 is the lack of information on Alice’s string
to Bob under the condition that Bob has the bit string
Y with errors. The difference between the deficits of
information of Alice’s bit string X to Eve and Bob is the
common secret of Alice and Bob.

−1 Q
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The corresponding partial density matrices in
Eq. (8) have the form

(9)

(10)

Further,

(11)

(12)

Calculating the eigenvalues of the matrices (9)–(12),
we obtain the following relations for the conditional
von Neumann entropies:

(13)

(14)
Finally, taking into account Eqs. (13) and (14), we
determine the key length

(15)
Thus, the length of the secret key in the modified pro-
tocol is the same as in the standard BB84 protocol
[1, 10]. The critical error at which the key length van-
ishes is determined from the relation 2h(Qc) = 1 as
Qc ≈ 11%; i.e., the modification of the protocol does
not “destroy” the cryptographic properties of the
protocol.

6. CONCLUSIONS
An effective solution has been proposed for systems

where it is technically difficult to ensure the cryp-
tographic protection of detectors. This solution is
reduced to the modification of the protocol such that
detectors become untrusted and even counts in them
are completely accessible to the observation of the
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eavesdropper. The proposed modification does not
require any significant changes in the protocol and in
the quantum key distribution system. Analogy with the
twin-field protocol provides a qualitative information-
theory explanation reasons for the security of keys in
the case of detectors accessible to the eavesdropper.

Furthermore, the accessibility of detectors ensures
natural protection from the detector mismatch attack,
making it completely inefficient.

To conclude, this modification is achieved without
significant changes in the equipment of the quantum
key distribution system and does not reduce the key
distribution rate.
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