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The dynamics of a filled massive vortex is studied numerically and analytically using a two-dimensional
model of a two-component Bose–Einstein condensate trapped in a harmonic trap. This condensate exhibits
phase separation. In the framework of the coupled Gross–Pitaevskii equations, it is demonstrated that, in a
certain range of parameters of the nonlinear interaction, the precession of a sufficiently massive vortex
around the center is strongly slowed down and even reverses its direction with a further increase in the mass.
An approximate ordinary differential equation is derived that makes it possible to explain this behavior of the
system.
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INTRODUCTION

Ultracold gas mixtures consisting either of different
chemical (alkaline) elements, or of different isotopes
of the same element, or of the same isotopes in two
different (hyperfine) quantum states exhibit a much
wider variety of static and dynamic properties as com-
pared to single-component Bose–Einstein conden-
sates [1–5]. To a large extent, this is due to the pres-
ence of several parameters of nonlinear interactions,
which are proportional to the corresponding scattering
lengths and can sometimes be tuned over a wide range
according to the aims of experimentalists using Fesh-
bach resonances [6–10]. In particular, with a suffi-
ciently strong mutual repulsion between two types of
matter waves, a regime involving spatial separation of
condensates is possible [11, 12], in which domain walls
are formed between the phases, characterized by effec-
tive surface tension [4, 13]. Spatial separation can
underlie many interesting configurations and phe-
nomena, for example, the nontrivial geometry of the
ground state of binary immiscible Bose–Einstein con-
densates in traps [14–16] (including optical lattices
[17–19]), bubble dynamics [20], quantum analogs of
classical hydrodynamic instabilities (Kelvin–Helm-
holtz [21, 22], Rayleigh–Taylor [23–25], and Pla-
teau–Rayleigh [26]), parametric instability of capil-
lary waves at the interface [27, 28], complex textures in
rotating binary condensates [29–31], three-dimen-
sional topological structures [32–37], capillary buoy-
ancy of dense droplets in trapped immiscible Bose–
Einstein condensates [38], etc.

In particular, vortices with a filled core in binary
Bose–Einstein condensates and their dynamics are of
considerable interest [3, 39–45]. Such a structure can
be represented as a quantized vortex in one of the com-
ponents, the core of which is filled with the second
component (see the numerical example in Fig. 1). In
this case, the dip in the density of the vortex compo-
nent provides a potential well trapping the second
(“bright”) component. In turn, the bright component
creates a potential “hill that pushes” the vortex com-
ponent apart and thereby increases the width of the
vortex core. As a result, some equilibrium profile is
formed in a self-consistent manner.

As compared to vortices in the B phase of super-
fluid 3He occupied by the chiral A phase, filled vorti-
ces in ultracold rarefied mixtures of Bose gases have a
much simpler structure (for comparison, see review
[46] and also [47]). In particular, in the core of a (sta-
tionary) cold gas vortex, the superfluid current has a
simple structure  (in contrast to Fig. 41
in [46], where there exists a counter-rotation region).
Moreover, since binary Bose–Einstein condensates of
cold atoms are described by a system of coupled
Gross–Pitaevskii equations, in which the Hamilto-
nian contains no cross terms in the kinetic energy,
there is no well-known Andreev–Bashkin effect,
where the superfluid velocity of one component con-
tributes to the current of another component [48, 49].

The vortex complex in the external potential of the
trap, being deviated from the equilibrium position,
begins to move nearly as a whole. One of the aims of
this study is the theoretical analysis of the emerging
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Fig. 1. (Color online) Numerical example of a filled vor-
tex: (a) normalized total density of condensates and (b) the
phase of the vortex component.
motion and the derivation of effective simplified equa-
tions for its description. For example, spatially two-
dimensional models of binary condensates in a poten-
tial well with a f lat bottom were recently considered in
[42, 43], where ordinary differential equations were
proposed to determine the dynamics of massive
“pointlike” vortices in such systems. At the same time,
the practically important case of a smooth external
potential remains unexplored. In this work, this gap is
filled. Approximate equations of motion for massive
vortices in smoothly inhomogeneous Bose–Einstein
condensates are derived. These equations have a non-
canonical Hamiltonian structure and, for one vortex,
formally correspond to the dynamics of an electric
charge in a certain static (two-dimensional) inhomo-
geneous electromagnetic field, where the electrostatic
field lies in the (x, y) plane, and the magnetic field is
directed along the z axis and is proportional to the
equilibrium density  of the condensate without
vortices.

Analyzing the dependence of the parameters of this
simplified model on the parameters of the original sys-
tem of partial differential equations (in our case, these
are coupled two-dimensional Gross–Pitaevskii equa-
tions), we reveal an interesting effect that has not yet
been recognized for vortices in Bose–Einstein con-
densates. Namely, in the case of unequal nonlinear
self-repulsion coefficients, the “electric” force in the
case of a small filling of vortices with the bright com-
ponent (having small effective mass) can be directed
from the center of the system, and as the mass
increases, it gradually decreases and then reverses its
direction. This leads to a change in the direction of the
vortex drift (its precession around the origin). We
emphasize that, with such reverse precession, no qual-
itative rearrangement occurs inside the vortex core.
Direct numerical simulations of the Gross–Pitaevskii
equations will confirm the predictions of the simpli-
fied model.

INITIAL MODEL

We consider a two-dimensional, sufficiently rar-
efied binary Bose–Einstein condensate in the limit of
zero temperature, where the Gross–Pitaevskii equa-
tions are applicable. For maximum simplicity, it is
assumed that both types of atoms have the same mass,
m1 = m2 = m. Under this assumption, the case of a
small difference in the masses of isotopes, such as 85Rb
and 87Rb, can be described approximately. The har-
monic trap is characterized by a transverse frequency
ω, which is the same for both types of atoms. We
choose the scale τ = 1/ω for time,  for
length, and  for energy. This allows us to write
the equations of motion for the complex wavefunc-
tions A(r, t) (vortex component) and B(r, t) (bright
component) in the dimensionless form

(1)

(2)

where  is the trap potential and  is
the symmetric matrix of nonlinear interactions. The
interactions can be physically described by the scatter-
ing lengths  [2]:
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DIRECT AND REVERSE PRECESSION OF A MASSIVE VORTEX 417
Since we are interested in the situation where all scat-
tering lengths are positive, the first self-repulsion fac-
tor can be normalized to unity, . For only one
component A without any vortices, the equilibrium
condensate density would be

(4)
where μ ≫ 1 is the chemical potential. The effective
radius of the condensate is . The motion of
the massive vortex complex occurs against such inho-
mogeneous background.

The phase separation condition 
 favors the existence of a filled vortex [11,

12]. In a relatively narrow transient layer between the
separated condensates, the densities of both phases
nearly vanish in the direct or opposite direction. How-
ever, for the applicability of the Gross–Pitaevskii
equations, the width of this layer  should
nevertheless be much larger than the characteristic
scattering length  (usually equal to several hundred
Bohr radii), i.e., δ(ltr/a) ≫ 1. The corresponding
energy excess (surface tension) is given by the expres-
sion

(5)

where K ∼  at small g [11, 13]. Below, we will see
that the dependence of the surface tension on the
background density significantly affects the dynamics
of a massive vortex, since it creates a gradient of its
effective potential energy.

STRUCTURE OF WAVEFUNCTIONS
When deriving the equations of vortex motion, we

neglect the free excitations of acoustic vibrations and
the deviation of the vortex shape from the circular one.
The decisive factor allowing this to be done is the
smallness of the ratio w/ , where w is the radius of
the vortex core and  is the size of the condensate.
Under this condition, the structure of the vortex is
almost the same as that against the homogeneous
background and its velocity is much lower than the
velocities of potential excitations. As a result, the
wavefunctions A and B can be approximately repre-
sented in the simplified form

(6)

(7)
where R(t) is the vortex position and U(t) is a certain
two-dimensional vector, the relation of which to the
vortex velocity will be revealed further on. It is very
important that the function Ψv involves a quantized
vortex, and its phase Φv(r) increases by  at the coun-
terclockwise passing around the R point. The vortex
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phase Φv(r) is appropriately matched to the density ρa,
which coincides with ρ(r) far from the vortex, whereas
ρa ≈ (|r – R|, R) inside its core, so that

(8)
In turn, the densities (|r – R|, R) and ρb are matched
to each other, as in the case of the filled vortex, against
the locally homogeneous background density

(∞, R) = ρ(R). Additional functions F and G in the
A and B phases are related to the parts of velocity fields
that are due to the motion of the dip in the vortex com-
ponent density and to the quasihomogeneous motion
of the bright component, respectively. With a suffi-
cient accuracy, we can assume that G = r – R and F =
(r – R)f(|r – R|, R), where the scalar function  at
fixed R satisfies the second order linear differential
equation

(9)
which follows from the continuity equation for the
steady-state f low

(10)
Equation (9) is supplemented by the conditions that f
tends to zero at infinity and that the singularity at zero
should be as weak as possible. It is very important that
f decreases rapidly at distances of the order of the vor-
tex core width. The product U � F is qualitatively simi-
lar to the velocity potential that describes the f low
around a cylinder in classical hydrodynamics and
determines the corresponding added mass.

SIMPLIFIED EQUATIONS OF MOTION
FOR A VORTEX

We derive approximate equations of motion for the
filled vortex based on the Hamiltonian structure of the
Gross–Pitaevskii equations,

(11)
where the Hamiltonian is given by the expression

(12)

Using Eqs. (6), (7), and (11), we easily obtain the
two relations

(13)

(14)

Far from the vortex, either  or variational deriva-
tives  are negligibly small (and 
everywhere). Therefore, the main contribution to the
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integrals comes from the closest vicinity of the vortex,
where we can use the approximate formulas

(15)

(16)
Substituting the time derivatives of densities and
phases expressed from these formulas into Eqs. (13)
and (14), we obtain after straightforward calculations
two vector equations

(17)

(18)
where the scalar variable M is determined by the
expression

(19)

It is clear that the Hamiltonian  is quadratic in
terms of U and should have the form

(20)

Therefore, one should identify U with the velocity of
the vortex , and then M turns out to be the total
effective mass of the filled vortex, which includes both
the mass of the bright component Mbr trapped in the
vortex core and the added mass of the vortex compo-
nent due to the presence of additional kinetic energy
during the motion of the density dip through the con-
densate.

In principle, the added mass  could depend on
R; then, to preserve the conservative character of the
system, we should introduce the vector P = M(R)U
and rewrite the equations of motion in the “slightly
corrected” form

(21)

(22)
Probably, the generalization would be useful when
considering strongly oblate three-dimensional con-
densates in the Thomas–Fermi regime along all three
coordinates. However, it is easy to show that, in the
case of strictly two-dimensional Gross–Pitaevskii
equations, the mass  in the leading approximation
does not depend on the position of the vortex.

ESTIMATES FOR THE COEFFICIENTS
If the effective radius w of the vortex significantly

exceeds the thickness of the domain wall δ, then the
added mass can be estimated using the well-known
formula from classical hydrodynamics, i.e., Madd ≈
πρ(R)w2. On the other hand, since the hydrodynamic
pressures of the condensates are  and

, and they coincide in the leading order
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on both sides of the domain wall (if the surface tension
σ is not taken into account), the conservation of the
mass of the bright component makes it possible to esti-
mate the dependence w(R) using the condition

(23)

In addition, this gives us also the estimate for the
effective mass

(24)

Since the total mass of a sufficiently large vortex
turns out to be independent of its position on a spa-
tially inhomogeneous background density, the derived
system of equations (17) and (18) [taking into account
Eq. (20)] is mathematically identical to the equation of
the two-dimensional motion of an electric charge in
magnetic and electric fields. The “electrostatic poten-
tial” W(R) in this case is equal to the sum of three con-
tributions. The first contribution is the part of the
kinetic energy that is due to the gradient of the vortex
phase Φv(r). The second contribution is the energy of
nonlinear interactions plus the potential energy of the
vortex in the field of the trap. The third contribution is
the energy of “quantum pressure.” The first contribu-
tion in the well-known local induction approximation
can be estimated as

(25)

Note that Λ0 ≈ 2 in practically interesting cases. The
second and third contributions can be estimated (up to
an insignificant additive constant) using the concept
of surface tension,

(26)

where C is a coefficient about unity. Thus, the whole
expression for the potential energy is reduced to the
simple form

(27)

where the effective dimensionless parameter Λ
depends in a nontrivial way on the mass of the trapped
bright component,

(28)

Here, the second term is due to the surface tension at
the phase boundary, and the third one is responsible
for the “mass” contribution, taking into account the
buoyant force. It is noteworthy that the hydrodynamic
contribution Λ0 can be significantly smaller than each
of the other terms.
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Fig. 2. (Color online) Examples of trajectories of a massive
vortex in the time interval [0, 100] at μ = 30 for masses of
the bright component Mbr/2π = (1) 8.0, (2) 10.0, (3) 12.0,
(4) 14.0, and (5) 16.0. The motion begins at approximately
the same point, but the direction and velocities of the drift
are different.

Fig. 3. (Color online) Numerically calculated drift angular
velocity versus the initial coordinate at g11 = g12 = 1, g22 =
0.5, and μ = 30 for masses of the bright component
Mbr/2π = (1) 8.0, (2) 10.0, (3) 12.0, (4) 14.0, and (5) 16.0.
VORTEX PRECESSION RATE

In terms of the complex position
 of the vortex, the resulting equa-

tion of motion for the massive vortex can be written as

(29)

where . This equation is integrable in
quadratures in an obvious way when passing to polar
coordinates. We do not present the corresponding for-
mulas here but note only that particular solutions in
the form  exist. The correspond-
ing substitution gives two branches of the solution

(30)

Here, the solution Ω–(R0), which corresponds to the
charge drift in crossed magnetic and electric fields, is
mainly of interest. It is seen that large positive values
of Λ promote a fast counterclockwise drift [negative
frequency Ω−(R0)]. Moreover, both branches merge at
some critical value of the radius, which decreases with
increasing Λ. On the contrary, the drift is slowed down
at small Λ and reverses its direction (clockwise drift at
positive frequency) at negative Λ. According to
Eq. (28), the system under study has two features at
g22 ≠ g11 = 1. First, the parameter Λ at g22 > 1 increases

+( ) = ( ) ( )Z t X t iY t

Λ− + μ − +� �� �

2( | | /2) = 0,
2

MZ i Z Z Z

π� = /2M M

− Ω0( ) = exp( )Z t R i t

±
 μ − μ − − ΛΩ − ± 
  

�

�
�

2 2 2
0 0

0 2
( /2) ( /2) 2( ) = .

2 4
R R MR
M M
JETP LETTERS  Vol. 115  No. 7  2022
rapidly with the vortex mass, which should reduce the
area of the stability of motion. Second, negative values
of Λ and reverse drift are possible at a sufficiently large
vortex mass if g22 < 1.

RESULTS OF NUMERICAL TESTS

The parametric domain Λ ≫ 1 will be studied else-
where. Here, the prediction of the theory about the
reverse drift is verified by direct numerical simulation
of the coupled two-dimensional Gross–Pitaevskii
equations. The performed calculations were focused
on experimentally realized 85Rb‒87Rb mixtures [8],
where a12/a22 ≈ 2, while a11 can be varied over a wide
range using the Feshbach resonance. For this reason,
in our numerical experiments, we took the values g11 =
g12 = 1 and g22 = 0.5. The employed numerical method
is similar to that used in [37, 38, 50].

The initial state for numerical integration was pre-
pared in such a way that the filled vortex was located at
some point R(0) = (X0, 0) and had zero velocity. Next,
its trajectory (the position of the center of mass of the
bright component) was tracked and the drift angular
velocity was calculated. Examples of the trajectories
are shown in Fig. 2. It is seen that fast oscillations
characteristic of the charge motion in a magnetic field
are superimposed on the slow drift. The plots of the
drift angular velocity, confirming the possibility of the
reverse motion, are shown in Fig. 3.

CONCLUSIONS

To summarize, a simple equation of motion has
been derived for a massive vortex in a two-dimensional
smoothly inhomogeneous binary Bose–Einstein con-
densate and the possibility of reverse drift predicted by
this equation has been numerically confirmed. The
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equation differs from a similar equation for a massless
vortex in the natural additional term  and in a dif-
ferent coefficient in the expression for the effective
potential energy. There are even more possibilities for
controlling the coefficients in the case of unequal
atomic masses  and at different external poten-
tials .

Note that a system of several massive vortices can
be treated in a similar way. Technical difficulty
appears only in the calculation of pair interactions.
However, for some special equilibrium density profiles
ρ(x, y), this difficulty is successfully overcome, as
shown in [51, 52] for one-component Bose–Einstein
condensates.

A strictly two-dimensional condensate is an ideal-
ization. A detailed test of the reverse precession regime
for strongly oblate three-dimensional condensates is a
task for the future. Preliminary numerical experiments
have already shown a qualitative similarity to the pla-
nar case.
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