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A new attack on the quantum key distribution is proposed involving joint collective unambiguous measure-
ments of reflected probe states from an intensity modulator and photon number splitting (PNS) measure-
ments, i.e., nondestructive measurements of the number of information photons in the quantum communi-
cation channel. This attack does not change the relative statistics of photocounts of states with different num-
bers of photons, does not lead to errors on the receiver side, and, thereby, is not detected by any of known
methods, including the modified decoy state method. The attack results only in additional losses in the com-
munication channel, which are not “controlled” by the decoy state method. The dependence of introduced
losses on the intensity of ref lected probe states is estimated. The critical level of losses depends on a particular
physical implementation of the quantum cryptography system, which determines the upper bound of the
intensity of reflected probe states. The knowledge of this bound is fundamentally necessary to ensure the
security of keys. The fact that the attack does not lead to errors on the receiver side and does not change the
relative statistics of photocounts but only results in additional losses, which depend on the intensity according
to the distinguishability of reflected probe states, does not mean that this attack transforms quantum cryptog-
raphy systems from the type of cryptographic systems where the security of keys is guaranteed by fundamental
quantum mechanical laws to the type of systems where this security is guaranteed by technical restrictions.
Even in the presence of side channels of information leakage, the security of keys is still guaranteed by funda-
mental quantum mechanical restrictions on the distinguishability of states. A low level of distinguishability
(“intensity”) of quantum states in side channels is naturally reached by technical tools.
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1. INTRODUCTION

The development of methods for unauthorized
information disclosure accompanies the development
of methods for transmission and protection of infor-
mation. In the classical region, information carriers
are electromagnetic signals, which are transmitted
either through open space or through cable or fiber
optic communication channels. Unauthorized infor-
mation disclosure for classical signals is possible both
from cable communication channels and from fiber
optic communication channels.

To obtain information, the direct access to a com-
munication channel is not necessarily needed because
the operation of transmitter and receiver equipment
results in side electromagnetic radiation, which can be
detected. The detection of side electromagnetic radia-
tion can compromise the operation of electronic cryp-
tographic equipment. Various types of interfaces

between individual components of equipment also
result in compromising side radiation.

There are other side channels of information leak-
age such as electromagnetic radiation and optical radi-
ation (electromagnetic radiation in the optical range),
as well as acoustic, ultrasonic, and mechanical chan-
nels, which can lead to information leakage without
direct access to a source of information. Usually, a
large set of methods and experimental devices in this
field are not widely reported. Some aspects of the
detection of side signals in classical cryptographic sys-
tems, as well as some historical examples, can be
found, e.g., in [1–7].

When the optic signal intensity is reduced to a sin-
gle-photon level, the signal becomes quantum and this
leads to a qualitatively new situation. In contrast to the
intense classical optical signal transmitted through a
fiber optic communication channel, eavesdropping
attempts to measure an unknown state in a quantum
383
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communication channel result in perturbation of a
quantum state and errors on the receiver side [8]. For
this reason, the detection of any attack on the quan-
tum communication channel is guaranteed by the fun-
damental quantum laws. Furthermore, fundamental
quantum-mechanical restrictions allow relating the
observed level of perturbation of quantum states (level
of errors) observed on the receiver side to the upper
bound of information leakage [9–11]. This is the foun-
dation of quantum cryptography, i.e., quantum secret
key distribution.

In this sense, quantum cryptography systems are pro-
tected against attacks directly on the communication
channel. Moreover, it is assumed that the communication
channel is directly accessible for active eavesdropping.

The currently achieved understanding of attacks on
quantum states in the quantum communication chan-
nel, i.e., attempts at retrieval of transmitted key infor-
mation, is sufficiently deep. There are methods to take
into account that a source of quantum states is not
strictly single-photon, losses in the communication
channel, non-unit quantum efficiency of single-pho-
ton detectors, etc. Quantum cryptography ensures the
unconditional security of keys with respect to attacks
on the quantum communication channel, which is
based only on fundamental quantum-mechanical
laws.

Quantum cryptography systems are complex
devices including numerous active fiber optic compo-
nents such as phase modulators, intensity modulators,
polarization controllers, and controlling electronics
with various external and internal interfaces. The
operation of electronics and electronically controlled
active fiber optic elements leads to side radiation,
which carries information on distributed keys.

The situation in quantum cryptography is more
delicate than that in classical cryptographic systems.
Quantum cryptography systems are open systems
because the eavesdropper can obtain information on
distributed keys not only from detected side radiation
but also by actively probing the state of fiber elements
(phase modulators, intensity modulators, polarization
controllers, etc.) through the fiber optic communica-
tion channel.

Without understanding and inclusion of information
leakage through side channels, it is impossible to exactly
analyze the security of keys in real quantum cryptogra-
phy systems. Another fundamental difference of side
channels in quantum cryptography from side channels
in classical systems is that states in side channels can-
not be considered classically. The eavesdropper can
measure information quantum states and states in side
channels simultaneously; consequently, the fully
quantum consideration is necessary.

The complete set of methods of including attacks
on equipment and taking into account side channels of
information leakage is currently under active study.
Unlike classical cryptographic systems, the study of
information leakage through side channels began only
recently [12–20].

A source of information states in real systems pro-
vides weakened coherent states with Poisson photon
number statistics and is not strictly single-photon. The
secret key is composed only of a single-photon com-
ponent of coherent states. Conservatively in favor of
the eavesdropper (Eve), it is accepted that information
contained in multiphoton components of states with
the number of photons k > 1 is known to Eve. The
fraction of the single-photon component on the
receiver side is estimated by the modified decoy state
method (see details in [21–23]). In the absence of side
channels of information leakage, the most general
attack on the single-photon component of states is a
unitary attack. Such an optimal attack can be con-
structed explicitly for the BB84 protocol [24, 25].
Since the multiphoton components of states are
“given” (assumed to be known) to the eavesdropper,
the further goal is reduced to the construction of an
attack on a single-photon component with allowance
for side leakage channels.

It is fundamentally important for the decoy state
method that, without additional information, Eve
does not know from what state and with what average
number of photons a component with a given number
of photons  originates. The distortion of the single-
photon component in messages belonging to coherent
states with various intensities distorts the relative
observed total count rate, i.e., statistics on the receiver
side for messages where states with various intensities
were sent. Change in the relative total count rate
makes it possible to estimate the fraction of the single-
photon component and error in it on the receiver side.

Everything stated above is valid when Eve does not
have additional information on a state sent to the
quantum communication channel in each message
and on its intensity (average photon number).

In the presence of side signals, assumptions underly-
ing the decoy state method are violated. Actively probing
the state of the intensity modulator, Eve obtains addi-
tional information on the intensity of the transmitted
state.

Measurements of the probe states ref lected from
the intensity modulator give additional information on
the intensity of the transmitted state in each message.
Two types of measurements are possible:

• measurements minimizing the error of distin-
guishing reflected states,

• unambiguous measurements (UMs).
Measurements of the first type allow distinguishing

quantum states but with a certain error probability.
Measurements of the second type distinguish states
with certainty if a conclusive outcome is obtained.
Upon an inconclusive outcome, usually denoted as ?,
nothing is known about the state. When distinguishing
N states, a measurement of the first type has N out-

k
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comes. A measurement of the second type has 
outcomes, i.e., N conclusive and one inconclusive. It
is noteworthy that the necessary and sufficient condi-
tion for the possibility of UMs is the linear indepen-
dence of a set of N states [26–33], which is fulfilled for
reflected states (see below).

An attack on distributed keys in the case of mea-
surements of the first type is detected by the decoy
state method because this attack changes the Poisson
count statistics. However, the standard decoy state
method [21–23] should be significantly modified, as
done in [17, 18].

A new attack described in this work involves the active
probing of the intensity modulator, UMs of reflected
states, and a PNS attack with the nondestructive mea-
surement of the number of photons in information states
in the quantum communication channel, which has not
yet been considered, as far as I know.

With this attack, Eve knows the entire key, does not
generate errors on the receiver side, and does not
change the photocount statistics on the receiver side in
messages corresponding to coherent states with vari-
ous intensities (average number of photons).

This attack cannot be detected by the decoy state
method because it does not change the observed relative
statistics of counts of states with various intensities on the
receiver side. The attack only reduces the general rate of
photocounts, i.e., only increases observed losses without
change in statistics in Fock components of states with dif-
ferent numbers of photons.

It is important that total losses in the communication
channel are not explicitly involved in the decoy state
method [17, 21–23]; i.e., neither the standard [21–23]
nor the modified decoy state method [17, 18] requires
tracking total losses.

Since the proposed attack results only in additional
losses, i.e., reduction of the count rate on the receiver
side, and does not generate errors and does not violate
the statistics of counts, it is important to know the level
of losses generated by this attack.

More precisely, the attack is not detected by known
methods and is efficient, i.e., undetectable if the level of
losses generated by this attack is no less than a certain
value.

The aim of this work is to estimate the critical
observed level of losses, i.e., decrease in the photocount
rate at which this attack becomes possible.

2. DESCRIPTION OF THE ATTACK
The idea of the attack is quite simple. Quantum

cryptography systems with phase encoding on the
receiver side involve active elements—phase and
intensity modulators. If the state of the phase modula-
tor is known, the transmitted key bit is known. If the
state of the intensity modulator is known, the intensity
(and average number of photons) of the coherent state
in it is known. If Eve certainly knowns the states of

+ 1N
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both active elements, Eve knows the entire transmitted
key.

Since quantum cryptography systems are open sys-
tems, Eve not only has access to the quantum commu-
nication channel, but also can actively probe states of
the active elements through the fiber optic communi-
cation channel by sending probe radiation and, then,
measuring the reflected state.

The degree of distinguishability of states reflected
from active elements of the transmitted station
depends on the intensity of reflected states. Intense,
classical states are certainly distinguishable. The
intensity of information states sent from the transmit-
ter station is controlled by the transmitter, whereas the
intensity of reflected states is controlled by Eve. The
more intense the probe signals sent by Eve, the more
intense the reflected probe states.

To know the upper bound of the intensity of
reflected states, it is necessary to know the upper
bound of the intensity of input probe states, which is
dictated by the melting of optic fiber [34–36]. In other
words, the intensity of input states cannot be larger
than the critical value at which the fiber is melted [34–
36].

The upper bound of the intensity of reflected states
at the known upper bound of the intensity of input
states can be controlled by using optical insulators,
which weaken output reflected states to the necessary
level. This level is assumed to be known and deter-
mines the probability of distinguishability of output
probe states.

The further consideration implies the application
of the BB84 protocol, as the most widely used. The
phase modulator can be in four states corresponding to
the values x = 0 and 1 in the direct, , and conju-
gate, , bases. Let  be states reflected from
the phase modulator corresponding to these four val-
ues.

The decoy state method [17, 23] usually involves
states with three different intensities (average numbers
of photons) μ, , and , which correspond to three
different states of the intensity modulator. Let 
be states reflected from the intensity modulator for
three intensities (average numbers of photons)

. There are 12 reflected states in the
side active probing channel:

(1)

If coherent states are used in practice as input probe
states, the state at the output to the communication
channel after reflection from an active optical element
will be a coherent state with the shifted phase depend-
ing on the state of the active element and with a differ-
ent intensity. In favor of Eve, reflected states are
assumed pure because they have large distinguishabil-

= +b
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ity. Under these assumptions, reflected states can be
represented in the form

(2)

2.1. Direct Distinguishing of States in Side Channel
The first strategy is reduced to direct distinguishing

of 12 reflected probe states specified by Eqs. (1) and
(2) by means of UMs. However, this strategy is not the
best because UMs give a conclusive outcome with a
low probability since 12 states should be distinguished.

This strategy provides a conclusive outcome with a
probability of about , where 

 is the maximum average number of
photons in reflected states.

It is assumed that the average number of photons in
reflected states in the case of the use of optical insula-
tors does not exceed the average number of photons in
reflected states in information states ,

. Under this attack,
the probability of distinguishing the intensity of trans-
mitted information states and values of the key bit is
negligible; correspondingly, the attack in this form
results in overly large losses. The following strategy
will be efficient.

2.2. Measurement of the Intensity of States 
Reflected from the Intensity Modulator 

and the PNS Attack on Information States 
in the Quantum Communication Channel

The aim of Eve is to know the transmitted bit with-
out generating errors and to avoid the detection by the

decoy state method. To the last aim, Eve should know
which of the states with the intensity μ, ν1, or ν2 is sent
in each message.

Attack: Performing UMs, Eve distinguishes the
states , , and . If the outcome of the
measurement is inconclusive, the message is blocked.

If the outcome is conclusive, the state ,
, or  is known. Then, Eve performs non-

destructive measurements of the number of photons in
information states, i.e., PNS attack. If a message with
the number of photons k < 3 is detected, it is blocked.
If the number of photons detected in information
states is , UMs of information states are per-
formed.

The necessary and sufficient condition for the pos-
sibility of UMs is the linear independence of states
[31]. If the basis in the BB84 protocol with phase
encoding is unknown, it is necessary to distinguish
four states. Four states in messages with three photons
have the form

(3)

i.e., four states specified by Eq. (3) become linearly
independent beginning with three-photon messages.

Indeed, the basis vectors in the Fock subspace with
three photons ( ) in two time windows are

Information states at k = 3 in two bases are given by
three vectors (see Eq. (3)):

The Fock subspace for the single-photon component
of states is two-dimensional; the number of informa-
tion states is still four; consequently, they are linearly
dependent. The subspace with two photons is three-
dimensional; the number of information states is still
four; therefore, they are linearly dependent. Hence,

UMs of information states are possible only beginning
with the three-photon component of states.

The probability , ξ = μ, ν1, ν2 of the pres-
ence of messages with three or more photons in the
quantum communication channel depends on the
intensity of the information coherent state, i.e., the
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Fig. 1. Schematic diagram of the attack with unambiguous measurements of reflected states and PNS measurements of informa-
tion states.

OKν ν ν ν
average number of photons in it μ, ν1, or ν2. This prob-
ability is given by the formula

(4)

To know the transmitted key bit, Eve should have mes-
sages with the number of photons  for messages
with any intensity. Consequently, the probability of
success is determined by the minimum probability of
finding three or more photons in messages with differ-
ent average number of photons ξ = μ, ν1, and ν2. Tak-
ing into account the hierarchy of intensities μ > ν1 >
ν2, the minimum probability is found in the form

(5)

After UMs of three-photon states, Eve knows the
transmitted bit. If the outcome of UMs of information
states is inconclusive, the message is blocked.

The PNS attack with subsequent UMs of informa-
tion states and removal of inconclusive outcomes
without knowledge to what message and with what
average number of photons the three-photon state
belongs distorts the statistics of photocounts in mes-
sages with different average numbers of photons μ, ν1,
and ν2, which is detected by the decoy state method.

However, Eve has access to states reflected from
the intensity modulator. Unambiguous measurements
of these states at the conclusive outcome after the PNS
attack and UMs of information states allow Eve, at the
conclusive outcome for reflected states, to know both
the information bit and the intensity (μ, ν1, or ν2) in
this message.

As a result, at two successive conclusive outcomes,
Eve knows the entire information on transmitted
states, i.e., the key bit and the intensity (μ, ν1, or ν2).
All other messages where the outcome is inconclusive
in PNS and UMs of either information states or states
reflected from the intensity modulator are blocked.
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The minimum probability of a conclusive outcome
when distinguishing states reflected from the intensity
modulator can be estimated now. Optimal UMs for
two pure states are known [29–31]. There are some
results on distinguishing more than two pure and
mixed states. To obtain particular numerical values, it
is necessary to know the exact structure of quantum
states and to use numerical minimization.

To estimate the probability of conclusive outcomes
and the corresponding losses induced in this attack, it is
more convenient to use exact analytical results to distin-
guish two states and to use cascade unambiguous mea-
surements, where a pair of states are distinguished at
each step, to distinguish three states (see Fig. 1). This
method does not require numerical minimization.

2.3. Cascade Measurements of Probe States

Cascade UMs for distinguishing three states
reflected from the intensity modulator, which are
briefly denoted as , , and , contain two
steps. At the first step, two states  and  are dis-
tinguished; more precisely, the third state is excluded
at one of two conclusive outcomes. For example, after
the exclusion of the state  at the first step, the states

 and  remain undistinguished. After the exclu-
sion of the state  at the first step, the states  and

 remain determined and are distinguished at the
second step of UMs (see Fig. 2). At the second step of
UMs, two pairs of states (Fig. 2)  and  or 
and  are distinguished.

The first step involves the measurement 
(Fig. 2), which is given by the decomposition of unity

(6)
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Fig. 2. Schematic diagram of the second unambiguous measurement cascade.

ν ν

ν

ν

ν ν

ν ν
where

(7)

and I is the identity operator. The operator-valued
measures  and  in Eqs. (6) and (7) up to nor-

malization are projectors; i.e., ,
which will be required below.

The probabilities of the conclusive outcome and
states at the output on the first cascade have the form

(8)

In view of Eq. (8), the probability of the conclusive
outcome at the first step satisfies the inequality

(9)

The second cascade of UMs (Fig. 2) is chosen
depending on the outcome at the first step. One of two
measurements is chosen; each measurement is speci-
fied a specific unity decomposition. When the out-
come at the first step is , the measurement

 chosen in the second cascade is given by the
decomposition of unity (Fig. 2)

(10)

where

(11)

(12)

If the outcome at the first step is , the mea-
surement  in the second cascade is given by

the decomposition of unity (Fig. 2)
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where

(14)

(15)

In view of Eqs. (10)–(15), the probability of the
conclusive outcome at the second step satisfies the
inequality

(16)

The resulting probability of the conclusive outcome in
two cascades when measuring states reflected from the
intensity modulator is no more than

(17)
Under the assumption that reflected states are coher-
ent, having different phases and average numbers of
photons , it follows from Eqs. (8), (12),

and (15) that , where
= .1 In view of the natural hierarchy

 of the intensities of reflected states, the
following estimate is obtained:

(18)

2.4. Final Stage of the Attack—Resending of States 
to the Receiver Side

In messages where conclusive outcomes are
obtained for reflected states and information states in
the quantum communication channel, Eve knows
both the information bit and the average number of
photons in the state in this message.

All messages with the joint conclusive outcome are
divided into three sets. The first, second, and third sets
include messages where sent states have the average
numbers of photons μ, ν1, and ν2, respectively. In all
these messages, Eve also knows the transmitted key
bit.

How can Eve use this attack so that errors do not
appear on the receiver side and the relative statistics of
photocounts in messages with different average number of
photons does not change?

We recall that, if a coherent state with the average
number of photons  passes through the communica-
tion channel with the transmission coefficient T and,

correspondingly, with losses , states immediately
at the input of the receiver side will have the form

(19)

Here,  is the transmission coefficient
through the communication channel, where L is the
length of the communication channel and δ is the rel-
ative loss coefficient. Correspondingly, the probability
of components of states with a nonzero number of
photons at the input of the receiver side is

(20)

In other words, Eq. (20) is the probability that each
component  with the number of photons

 reaches the input of the receiver side without
distortions after the passage through the channel with
losses. This probability is given by the expression

(21)

Let , , and  be the transparencies of the chan-
nel satisfying the equalities

(22)

(23)

(24)
These formulas give the probability of the joint con-
clusive outcome for distinguishing states, the average
number of photons in a given message, and the proba-
bility of determining the transmitted key bit. Infor-
mally, this is the fraction of messages with the average
number of photons at different ξ = μ, ν1, ν2 at which
Eve knows the entire information on these messages.

Further, the minimum transmission coefficient 
is selected from Eqs. (22)–(24)
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where  is the function inverse to .
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Let  for definiteness; then,

(26)

Informally, Eqs. (26) specify the sizes of sets of mes-
sages with μ, ν1, and ν2 where Eve knows the entire
information, i.e., the average number of photons and
the transmitted key bit.

If ξ = μ, in the fraction of messages

(27)

with the joint conclusive outcome, Eve sends states

(28)
with the necessary probabilities

(29)

directly to the input of the receiver station (Bob, see
Fig. 1). In the fraction of messages

(30)

Eve sends nothing to Bob (see Fig. 1) even if the joint
conclusive outcome is obtained. In other words, the
fraction of messages with the joint conclusive outcome
from Eqs. (22) and (23) is excessive. The size of the set
of messages with the joint conclusive outcome for
messages with μ is larger than that required for
inequalities (26) to be satisfied.

Eve acts similarly for messages with ν1, where the
joint conclusive outcome is obtained. In messages
with ν2, Eve delivers all messages with the joint con-
clusive outcome to the input of the receiver side.

As a result, states appearing at the input of the
receiver side at any ξ = μ, ν1, and ν2 are specified by the
density matrices

(31)

States at the input of the receiver side look like undis-
torted states transmitted through the channel with the
transparency . In this case, the relative and internal
Poisson statistics of states in the number of photons and
Fock states themselves remain undistorted, and all states
look like states transmitted through the same ideal chan-
nel with losses . As a result, Bob sees undistorted
states with undistorted internal and relative Poisson sta-
tistics for states with different ξ values at the input of the
receiver side. We recall that the decoy state method does
not follow losses and, therefore, cannot detect this attack.

= 2ξ ν

≥ ≥ ,OK μ minPr (min)P ( 3) (μ )k Q T

≥ ≥ ,
1OK ν 1 minPr (min)P ( 3) (ν )k Q T

≥ = .
2OK ν 2 minPr (min)P ( 3) (ν )k Q T

≥
min

OK μ

(μ )
Pr (min)P ( 3)

Q T
k

Φ  ΦBB| |x x
k k

− μ μ , ≥
!

min2 min(2 ) 1,
k

T Te k
k

−
≥

min

OK μ

(μ )1 ,
Pr (min)P ( 3)

Q T
k

∞
−

=
ρ = Φ  Φ ,

!
.

min2ξ min
min BB

0

1 2

(2ξ )(ξ ) | |

ξ = μ, ν , ν

k
x T x x

k k
k

TT e
k

minT

− min1 T
2.5. Some Numerical Estimates

We make numerical estimates of losses generated
by this attack. The observed losses depend on the aver-
age number of photons in probe states reflected from
the intensity modulator. Let the average number of
photons in reflected states, when the state of the inten-
sity modulator corresponds to messages of informa-
tion states with the average number of photons μ, be
μ* = 0.1. Correspondingly,  and 
for information messages with  and , respectively.
In view of Eqs. (24) and (27), the transmission coeffi-
cient TEve (loss coefficient ) under this attack
satisfies the inequalities

(32)

We recall that the probability of passage of the com-
munication channel with the length L = 100 km and
standard losses in the single-mode optic fiber 

0.2 dB/km is , which is three orders
of magnitude larger than that at this attack and used to
estimate the intensity of reflected probe states. The
lower the intensity of reflected states, the higher the
losses introduced at this attack. A low intensity of
reflected probe states can be ensured by using unilat-
eral optical isolators at the output of the transmitter
station. The attenuation coefficient of optical isolators
will be determined by a particular technical imple-
mentation of a quantum cryptography system.

3. CONCLUSIONS
Quantum cryptography systems were proposed for

quantum key distribution, where security is guaran-
teed by fundamental quantum mechanical constraints
on the distinguishability of states. More precisely, the
cloning of an unknown quantum state with unit prob-
ability is forbidden by the no-cloning theorem [37],
which is an elegant reformulation of the fundamental
Heisenberg–Robertson uncertainty relation [38, 39].
In application to quantum cryptography, this forbid-
denness means that the eavesdropper cannot make a
copy of an information state (correspondingly, any
number of copies if one could be made) for eavesdrop-
ping measurements. The Heisenberg–Robertson
uncertainty relation expresses the mathematical fact
that a pair of uncommuted observables (Hermitian
operators) cannot have a common system of eigenvec-
tors. Therefore, any attacks on a quantum communi-
cation channel will inevitably generate errors on the
receiver side.

The next fundamental fact is that quantum theory
makes it possible to obtain the upper fundamental
bound of information leakage to the eavesdropper at a
given observed error on the receiver side. This funda-
mental bound can be obtained from entropy uncer-
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tainty relations [11], which also follow from the non-
commutativity of observables.

Everything stated above concerns single-photon
states. Since a strictly single-photon source of infor-
mation states is currently absent, real systems involve
quasi-one-photon states of laser radiation, i.e.,
strongly weakened coherent states, which are superpo-
sitions of states with different Fock numbers of pho-
tons. The secret key is formed only from the single-
photon component of states reaching the receiver side.
The entire information contained in multiphoton
components of states is assumed to be known to the
eavesdropper (given to the eavesdropper). The decoy
state method [21–23] allows estimating the fraction of
the single-photon component reaching the receiver
side.

Thus, deep understanding of attacks on informa-
tion states in the quantum communication channel
has been already achieved. However, quantum cryp-
tography systems are open; i.e., the eavesdropper has
access not only to the quantum communication chan-
nel but also to side information leakage channels and
can actively probe optical components of the system—
phase and intensity modulators—whose state carries
information on the transmitted key. The measurement
of probe states by the eavesdropper does not lead to
errors on the receiver side because they do not perturb
information states and is an additional information
“bonus” for the eavesdropper.

The security of keys in quantum cryptography can-
not be analyzed without the inclusion of information
leakage through side channels.

In this work, a new attack on quantum cryptogra-
phy systems is proposed involving a joint attack on
information quantum states (PNS attack) and an
attack with unambiguous measurements of reflected
probe states from an intensity modulator in the side
channel. This attack is not detected by known meth-
ods because it does not change the relative statistics of
photocounts in the decoy state method, but it results
only in additional losses in the quantum communica-
tion channel, which are not detected by the decoy state
method. Moreover, it was previously believed that it is
unnecessary to follow losses in the communication
channel because they do not directly affect security if
the decoy state method is used.

The consideration in this work shows that the
inclusion of information leakage through side chan-
nels requires the inclusion of losses in the quantum
communication channel to estimate the length of the
secret key. Our estimates give the level of losses at a
known maximum intensity of reflected probe states at
which the eavesdropper knows the whole key, does not
generate errors on the receiver side, and is not detected
if general losses in the communication channel are not
controlled. At the level of losses below a critical value,
the eavesdropper will inevitably produce either errors
JETP LETTERS  Vol. 112  No. 6  2020
or changes in the relative statistics of photocounts on
the receiver side.

We again emphasize that the critical level of losses
depends on a particular physical implementation of
the quantum cryptography system, which determines
the upper bound of the intensity of reflected probe
states. The knowledge of this bound is fundamentally
necessary to ensure the security of keys. In particular,
if the system should guarantee the security of keys in a
100-km-long communication channel (the transmis-
sion coefficient ), and its physical implemen-
tation is such that the intensity of reflected states
under the attack described above leads to critical losses
of about the same value (the transmission coefficient

) or larger, the system cannot guarantee the
security of transmitted keys; i.e., the eavesdropper is
not detected.

The detection of the attack is ensured not by the
quantum key distribution protocol but by the physical
implementation of the system, which should be such
that this eavesdropping attack generates losses notice-
ably exceeding losses in the communication channel
with the length at which the system should operate.

To conclude, in order to avoid misunderstanding, it is
noteworthy that the inclusion of side channels of informa-
tion leakage does not transform quantum cryptography
systems from the type of cryptographic systems where the
security of keys is guaranteed by fundamental quantum
mechanical laws to the type of systems where this security
is guaranteed by technical restrictions. Even in the pres-
ence of side channels of information leakage, the security
of keys is still guaranteed by fundamental quantum
mechanical restrictions on the distinguishability of states.

The intensity (average number of photons) in infor-
mation states, which are quasi-single-photon and single-
photon ideally, emitted from the transmitter station is also
reached by the weakening of the initial signal to a neces-
sary level by means of technical tools. At a given intensity
of signals, their maximum allowable, best possible distin-
guishability is dictated by quantum mechanics. The same
is true for states in side channels. The upper bound of the
intensity of states in side channels is reached by technical
tools, i.e., by the implementation of the system that gives
the upper bound of the distinguishability of states, which
is also determined by the fundamental quantum-
mechanical constraints.
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