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Two constructions of mirror pairs of Calabi–Yau manifolds are compared by example of quintic orbifolds .
The first, Berglund–Hubsch–Krawitz, construction is as follows. If X is the factor of the hypersurface  by
a certain subgroup  of the maximum allowed group SL, the mirror manifold Y is defined as the factor by

the dual subgroup . In the second, Batyrev, construction, the toric manifold T containing the mirror Y as
a hypersurface specified by zeros of the polynomial  is determined from the properties of the polynomial

 specifying the Calabi–Yau manifold X. The polynomial  is determined in an explicit form. The group
of symmetry of the polynomial  is found from its form and it is tested whether it coincides with that pre-
dicted by the Berglund–Hubsch–Krawitz construction.
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Calabi–Yau manifolds appear when six of ten
dimensions are compactified in the superstring theory
[1], which is a way to unify the Standard Model and
Quantum Gravity. The effective theory is specified in
terms of the so-called special geometry arising in the
moduli space [2] of Calabi–Yau manifolds and their
mirrors. We study mirror pairs by example of three
cases of quintic orbifolds. We consider Calabi–Yau
manifolds defined as hypersurfaces in the weighted
projective space

(1)

Let M be the matrix of degrees of the quasihomoge-

neous polynomial , i.e.,

(2)

which specifies a hypersurface by the equation
 The matrix M is invertible and has a chain

or loop Fermat type [3], which, together with the
equality

(3)

is the condition that the hypersurface is a Calabi–Yau
manifold.

The whole family of Calabi–Yau manifolds  is
obtained by the deformation of the initial polynomial

 by allowed monomials:

(4)

Here,  are moduli of the complex structure of the
manifold .

We note that it follows from Eqs. (1) and (2) that, if

(5)

the polynomial  is invariant under the action of
the group of transformations , which acts as

(6)

The group  is called the quantum symmetry
group. The polynomial  can have the maximal
symmetry group , , and its
order is [3]

(7)
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MIRROR PAIRS OF QUINTIC ORBIFOLDS 371
The group  is generated by the generators
, which act at each coordinate  as

(8)

where the matrix B is inverse to the matrix M.

A generator of the quantum group  is the prod-

uct , which acts on  as in Eq. (6). The
group  has subgroups that conserve the holo-
morphic 3-form Ω nonvanishing on  or, equiva-

lently, conserve  Such subgroups are called
allowed. Let  be the maximal allowed sub-
group.

There is the chain of embeddings 
.

Now, we can define an orbifold in  as follows.
We choose in  a certain subgroup  that
includes (or equals) . Further, the factor-group by

 is obtained from it as

(9)

Then, the orbifold is defined as

(10)

A similar construction can be made for the matrix
 and four groups are obtained: 

, where  is a certain sub-
group , and the orbifold .

Now, there is the question: Can these groups be
chosen, and, if so, can they be chosen such that

 and  are mirrors of each other?
The Berglund–Hubsch–Krawitz construction [4,

5] is as follows. Let the group  leave invariant the
monomials

(11)

for a certain choice of . These monomials, together
with , specify the orbifold . Then, by
definition, the generators of the group  are

(12)

where  are the same as in Eq. (11) and the generators
of the group  are specified by their action on 

(13)

Aut( )M
, = , ,( ) 1 5iq M i … jx

π: ,�
2( ) jiiB

i j jq M x e x

MQ

=∏5

1
( )ii

q M ix
Aut( )M

MX

=
.∏5

1 ii
x

( )SL M

⊆MQ
⊆( ) Aut( )SL M M

MX
( )SL M ( )H M

MQ
MQ

:= .'( ) ( )/ MH M H M Q

, := .( ) / '( )MZ M H X H M

TM ⊆ ⊆( )T
T

MQ H M

⊆( ) Aut( )T TSL M M ( )TH M
( )TSL M ,( )T TZ M H

,( )Z M H ,( )T TZ M H

( )H M

=
= ∏

5

1
( ) liS

l i
i

e x x

liS
( )MW x ,( )Z M H

( )TH M

=
:= ,∏

5

1
( ) ( ) liT S

i
i

q l q M

liS
( )TSL M jx

π: .�
2( ) ijiBT

i j jq H x e x
JETP LETTERS  Vol. 112  No. 6  2020
According to Eq. (13), the generators of the group
 act on the coordinates as

(14)

We now define monomials as  from the
requirement of their invariance under the action of the
group .

It is convenient to reproduce this requirement in
the form

(15)
Below, we consider quintic orbifolds for which

. In this case, (15) is transformed to the con-
dition

(16)

The Berglund–Hubsch–Krawitz hypothesis
implies that the polynomial , together with the

superposition of , specifies the mirror orbifold
.

The Chiodo–Ruan theorem [6] states the mirror
symmetry of the orbifolds  and 
in the cohomology level.

In the simplest case, we can set . Then,
the orbifold is the initial Calabi–Yau manifold ,
i.e., . Then, the mirror Calabi–Yau
manifold denoted as  is the orbifold by the group

:

(17)

According to the second, Batyrev, construction of
mirror pairs of Calabi–Yau manifolds [7, 8], the mir-
ror Y of the initial orbifold X is specified as a hypersur-
face in the toric manifold. First, we describe the con-
struction of the toric manifold in X. The polynomial
specifying the family  can be represented in the
form
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The degrees of the monomials of the initial polyno-
mial (18) specifying the orbifold X are vectors in the
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sented in the matrix form . In view of
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and constitute a Batyrev polygon [8]. At the same
time, the same vectors  are the edges of the fan [7],
which determines the toric manifold T. Since 
vectors  lie in the four-dimensional space, they
should satisfy  linear relations

(19)

These relations determine the weights of the action of
the Abelian group  in 

(20)

which specifies the toric manifold

(21)

where the manifold Z is invariant under this action [7].
The next step is the construction of the hypersur-

face in T.
The mirror Calabi–Yau manifold Y is specified by

the zeros of a certain quasihomogeneous polynomial
[9–11] ), i.e.,

(22)

We find the explicit form of the polynomial 
from the homogeneity conditions:

(23)

We represent the polynomial  in the form of some
monomials , which will be found below:

(24)

From Eqs. (23) and (24), we obtain the systems of
equations for the exponents  (for brevity, we omit the
index i):
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The polynomial  consists of only  invari-
ant monomials whose degrees are found from the
solutions (25) with the imposition of additional condi-
tions of nonnegativity of degrees . Here,

 is the Hodge number of the Calabi–Yau
manifold Y. Thus, it is necessary to solve the system

(29)

Using the symmetry of the action of the torus, one
can make a change to the following (projective) coor-
dinates invariant under the action of :

(30)

Thus, we reduce the toric manifold to the projec-
tive space . In coordinates , the polynomial 
has the form

(31)

It is seen that the mirror Y is determined by the trans-
posed matrix .

From the form of deformations  of the com-
plex moduli space of the manifold Y, we find the group
of symmetry of the polynomial  and can verify
whether it coincides with the group  obtained in
the Krawitz procedure.

Below, we apply these two constructions to quintic
orbifolds. The whole family in this case is specified by
the following equation in the projective space:
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where
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and  are the moduli of the complex structure of the
manifold .

In the case of quintic, the matrix of degrees is diag-
onal and is  where I is the identity matrix, and

. The initial polynomial  has
the quantum symmetry group . The
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and its generators act as . The

group conserving the product  has the form

(34)

The group  is sometimes called the maximal
allowed group of the polynomial . It contains the
diagonal , and the factor group is

(35)

We deal with quintic orbifolds , which

are specified by the following equation in :

(36)

Here,  is the Hodge number. The monomials
 are invariant under the action of the group H.

According to the procedure described above, we con-
struct the mirror Calabi–Yau orbifold

(37)

or, in terms of the initial polynomial,

(38)

The monomials  are in turn invariant under the

action of the group .

We now perform calculations for three orbifolds.

Example 1. As the first example, we consider the
orbifold [12]
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Here,  are invariant under the action
of  and have the form

(41)

According to the Berglund–Hubsch–Krawitz con-
struction, the mirror Calabi–Yau manifold is con-
structed as the orbifold . The group  is

specified by the generators , where
 are the degrees of monomials  in Eq. (41), and

 generate the groups 
. In other words, the group  is gener-

ated by additive groups  in the
modulus of the action . In this case, the
group  has two generators and it has the form

(42)

The explicit form of monomials 
in Eqs. (44) can be alternatively obtained by solving
Eq. (16), i.e.,

(43)

The solutions of Eqs. (43) give the degrees of monomi-
als and have the form
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Then, the family of the mirror orbifold
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The weights of the action of the torus are determined
from the vectors . We write them in the matrix form

(48)

where  is determined from Eq. (40).
Using these weights , we obtain the toric manifold

(49)

and determine the polynomial specifying the mirror
orbifold Y

(50)

Imposing the necessary conditions (23), we arrive at
the system of equations

(51)

Solving Eqs. (51), we obtain the sets  and change the
coordinates in T, reducing it to . The polynomial
specifying the orbifold Y has the form

(52)

where the monomials  are specified by Eqs. (44).
Thus, the two constructions give the same results.
Example 2. We now consider the orbifold

(53)

The Calabi–Yau manifolds of X are specified by the
zeros of the polynomial
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and the deformations of the polynomial  are
invariant under the action of the group H =
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Similar to the preceding example, the Berglund–
Hubsch–Krawitz construction gives the mirror orbi-
fold , where

(56)

The only monomial invariant under the action of 
is . Then, the mirror Calabi–Yau orbifold

(57)

is specified by the zeros of the polynomial

(58)
We now apply the Batyrev construction. The set of

vectors , , and integers , ,
are determined similarly. The mirror of Y is specified
by the zeros of the polynomial  in the toric mani-
fold

(59)

Imposing similar constraints on the degrees of mono-
mials of the polynomial  and making a change to
the projective coordinates, we arrive at its explicit form
that coincides with Eq. (58).

Example 3. We consider now the orbifold
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The whole family of the orbifold of the Calabi–Yau
manifold  is specified by the equation

(61)

where the monomials  are invariant under the action
of :

(62)

= , = , = ,
= , = ,

= .

2 2 2 2 2 2
16 2 4 5 17 2 3 4 18 2 3 5

3 3
19 2 4 5 20 3 4 5

21 1 2 3 4 5

e x x x e x x x e x x x

e x x x e x x x
e x x x x x

= / 'TY H4

= , , , , ⊕ , , , , .5 5' [0 1 3 1 0] [0 1 1 0 3]TH Z Z

TH

∏ ii
z

= , =
, , , , ⊕ , , , ,5 5

1
[0 1 3 1 0] [0 1 1 0 3] YY h4

Z Z

= + + + + + ψ .5 5 5 5 5
1 2 3 4 5 1 2 3 4 5( )YW z z z z z z z z z z z

aV = , ,1 26a … laQ = , ,1 21l …

YW

−= .
25

21*
ZT C

C

YW

= , =
, , , ,�5

25.
[0 0 0 1 4] XX h4

X

=

= =

= + + + + + ϕ

= ,



 ∏

25
5 5 5 5 5
1 2 3 4 5

1
530

1 1

( )

aj

X l l
l

V
a j

a j

W x x x x x e x

C x

le
= , , , , ⊕ , , , ,5 5[1 1 1 1 1] [0 0 0 1 4]H Z Z

= , = , = ,
= , = , = ,

= , = , = ,
= , = , = ,

3 2 3 2 3 2
1 1 2 2 1 3 3 2 3

2 3 2 3 2 3
4 1 2 5 1 3 6 2 3

3 3 3
7 1 2 3 8 1 2 3 9 1 2 3

2 2 2 3 2 2
10 1 2 3 11 1 2 3 12 1 2 3

e x x e x x e x x

e x x e x x e x x

e x x x e x x x e x x x

e x x x e x x x e x x x

= , = , = ,
= , = ,

3 3 3
13 1 4 5 14 2 4 5 15 3 4 5

2 2
16 1 2 4 5 17 1 3 4 5

e x x x e x x x e x x x

e x x x x e x x x x
JETP LETTERS  Vol. 112  No. 6  2020



MIRROR PAIRS OF QUINTIC ORBIFOLDS 375
In [12], the total Hodge number is

(63)

Thus, there are additional 24 Laurent monomials
among the deformations of the initial polynomial :

(64)

According to the Berglund–Hubsch–Krawitz con-
struction, the mirror Calabi–Yau manifold is

(65)

and is specified by zeros of the polynomial

(66)

In the Batyrev construction, the mirror orbifold is
realized as a hypersurface in the manifold

(67)

Calculations similar to the above give the explicit form
of the polynomial in the projective coordinates, which
coincides with Eq. (66).

Calculations also give two additional monomials
 and , but they lie in the kernel of the Milnor

ring . The two constructions give the

same results.
To summarize, we have shown that the two con-

structions of mirror pairs give the same results for the
case of quintic orbifolds. It is interesting to understand
the relation between these constructions in the general
case.
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