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The fine structure of the density of states is studied numerically in the quantum Hall effect mode during the
ballistic transmission of an electron through an area of   1 μm2 of a two-dimensional electron gas with weak
long-range disorder. The calculated widths of strict quantum plateaus agree with experimental data. Periodic
conductance oscillations corresponding to the addition of two electrons to the simulated area are found in the
central part of the lower Landau band. One-dimensional countercurrents are found inside the area and at its
edge, which are separated by a magnetic length and explained by the motion of an electron with a low drift
velocity.
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The quantum Hall effect (QHE) [1, 2] is well
known in context of its relation to world constants and
clear experimental manifestations in various two-
dimensional conducting systems (see reviews [3–6]
and references therein). Despite the vast literature on
the QHE mechanism, it remains unclear how the
transition occurs between the modes of localized,
delocalized, and edge states [3, 7, 8]; whether they
coexist; how the widths of the quantized resistance
plateaus   and transition regions relate to each other;
how these widths depend on the type, amplitude of the
disorder, and large-scale features of the potential [9–
13]; how disorder affects the Landau quantization [3,
4, 14, 15]; and what role the spin, interaction, correla-
tions, and phase transitions play in a multiparticle sys-
tem in the QHE [4–6, 13, 16, 17]. Many quantum
mechanical calculations were performed to explain the
QHE, including very complicated ones [16, 17]. In
these cases, the results were speculatively extrapolated
to macroscopic systems with a two-dimensional elec-
tron gas (2DEG), although they were obtained for the
submicron simulated region. At such sizes, the contri-
bution of edge states to the widths of quantized pla-
teaus is much larger than that in macrosystems, where
the contributions of decoherence [5], compress-
ible/incompressible strips [12], and Hall field inho-
mogeneities [13] are important. The simulation of the

experimental observations of the QHE in small meso-
scopic structures would answer some of the questions.

Owing to improved technology and measurements
[6, 18–20], it has recently become possible to observe
the QHE in a very pure ballistic structure with a
2DEG square with an area of 1 μm2 and rather sharp
edges (with almost no incompressible strips) [21]. It is
important that the Hall plateaus are observed in small
samples not only in the resistance  [22, 23] but also
in the conductance measured diagonally across the
sample  [21, 24] and in the conventional two-ter-
minal conductance [25, 26]. The interpretation of the
two-terminal conductance within the Landauer
approach [27] does not require considering Hall fields
and chemical potential distributions within the sam-
ple, which is necessary for macrosystems [13].

The aim of this work is to simulate the integer
quantum Hall effect in structures with a clean two-
dimensional electron gas, while limiting the calcula-
tions to the coherent scattering of a particle on weak
long-range disorder in square samples with sides from
1 to 4 μm in a two-terminal situation. Disorder is con-
sidered long-range if its correlation length  is
much larger than the magnetic length . A universal
method for solving the problem of one-particle quan-
tum scattering is the method of nonequilibrium
Green’s functions [27, 28], which makes it possible to
find numerically the local and total density of states
(LDoS  and DoS), conductance G, and the distri-

1 Supplementary materials are available for this article at
https://doi.org/10.1134/S0021364020150114 and are accessible
for authorized users.
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Fig. 1. (Color online) Schematic representation of the sim-
ulated situation: the scattering region with the potential

 is bounded by the dashed lines in the channel, U is
the potential in the two-dimensional Schrödinger equa-
tion,  and  are chemical potentials, and V is the volt-
age between reservoirs of the two-dimensional electron
gas.
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bution of the nonequilibrium current  for
almost any small two-dimensional system built into a
homogeneous channel [29–32]. The two-dimensional
effective potential  used in this work was
obtained by the numerical solution of the three-
dimensional electrostatic problem for a solid structure
defined by a correlated distribution of localized
charges in a plane remote from the 2DEG [33]. Disor-
der in  is characterized by the Gaussian correla-
tion function . Calculations show
that, depending on the distance z between the plane of
localized charges and the 2DEG, the correlation
length  changes from 30 to 100 nm. At  40 nm
(  nm), the disorder can be considered long-
range, , in quantizing magnetic fields 
T (  nm). The method of calculating 
and  is given in the supplementary materials. To
simulate the weakening of disorder, we multiplied the
potential  by some factor less than one. The
ranges of the variation of potential f luctuations (0.05–
1.5 meV) and, accordingly, the standard deviations

 (0.016 to 0.5 meV) correspond to a high quality
of structures (with a mobility of 106–107 cm2/(V s)) [6,
18, 20]. In the proposed QHE model, the scattering
region is built into a homogeneous channel, where the
potential U is assumed to be  and infinite at the
boundaries (Fig. 1). The channel is located between
wide reservoirs with the 2DEG. The distribution func-
tions of electrons incident on the scattering region
from the left ( ) and from the right ( ) are

 and , respec-
tively [27]. The two-terminal conductance is deter-
mined by the Landauer formula for zero temperature
at . One-particle states at  are filled up to
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the Fermi level EF. The spin splitting of the states [3, 5]
and the dependence of the two-dimensional potential
U on B and the density of the 2DEG n [4, 9, 18] are
disregarded. We calculate the dependences of DoS, G,
and EF on n at fixed B, rather than vice versa, as that
would require the self-consistent calculation of

. Such calculations without additional
hypotheses make it possible to obtain the widths of the
quantum conductance plateaus, the fine structure of
Landau levels, and the distribution of one-dimen-
sional current states. The results are compared to mea-
surements in large and small samples [10, 11, 18, 19,
21, 23]. The fractional features of the conductance
[21, 25, 26] remain outside of the proposed model.

Figures 2 and 3 demonstrate the dependences
DoS , , and  calculated according to the
algorithm [28] for one implementation of the two-
dimensional potential U corresponding to a certain
working state of the mesoscopic sample. The calcula-
tion used the potential  with Lcorr = 80 nm,
defined on a 1 × 1-μm square and shown in Fig. 4
together with the coordinate dependences of the local
density of states and nonequilibrium current. The
problem of quantum scattering was solved at a fixed
perpendicular magnetic field  T (
3.46 meV) typical of the QHE. The density of states
DoS in the scattering region and the two-terminal
conductance G were calculated in terms of the Green’s
function [27], which was varied with a small step of
~10–6 meV as a function of the electron energy E. The
density of the 2DEG  in the scattering region was
found by summing DoS  starting from the state with
DoS = 0 to the Fermi energy EF. Then, various quan-
tities were plotted as functions of the gate-controlled
density. The analysis of these dependences is the main
content of this work, since they are easy to compare to
the measurements of electron transport. The details of
the calculations, including the calculated energy
dependences, are included in the supplementary
materials. Unlike the original dependence DoS
(Fig. S2 in the supplementary materials), the Landau
levels having the width  = 0.016 meV 
were transformed into wide bands in the dependence
DoS  at weak smooth disorder, and the gaps between
them were sharply narrowed (Fig. 2a). The fine struc-
ture of Landau bands is clearly visible. These bands
consist of hundreds of narrow DoS peaks, and their
height is orders of magnitude lower near the center
than that in the tails. We note that the number of DoS
peaks increases with the size of the scattering region.
In a macroscopic sample, the dependence DoS  is
averaged and information on the distribution of local-
ized and delocalized states disappears.

In Fig. 2b, narrow dips are seen on the left side of
each conductance quantization plateau. Strict pla-
teaus (perfectly f lat regions of quantized conductance)
are seen around characteristic densities n = 10 × 1010,
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Fig. 2. (Color online) (a, left scale) Density of states DoS , (a, right scale) Fermi level EF(n), and (b) conductance  versus
the density of the 2DEG at  T for one of the implementations of the potential in the scattering region of 1 μm2 with

 meV,  meV, Lcorr= 80 nm, and  meV. The horizontal arrows show the widths of the
strict quantum conductance plateaus.
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16 × 1010, and 23 × 1010 cm–2, and these regions have
the same width. The comparison of the , DoS ,
and EF(n) plots (Fig. 2) shows that deep dips of DoS
and sharp transitions between wide, almost horizontal
sections EF(n) occur near these densities. The strict
plateaus penetrate into neighboring Landau bands,
while much deeper into the beginning of the higher
number bands, so that the centers of the strict plateaus
lie along n to the right of the DoS minima, e.g., .
Note that such a shift is rare in experiments, but a shift
of the centers of the plateau  to higher B was indeed
observed under similar conditions [21] compared to
those predicted by the classical Hall effect. In Fig. 2,
the width of the transition regions , which contain
narrow peaks, conductance dips, and gradual changes

, is commensurate with the width of the strict pla-
teaus. This is indicated by an approximately equal
spacing of 3 × 1010 cm–2 between dividing vertical
dashed lines (Figs. 2a, 2b). According to Fig. 2, one
may expect that the width of strict plateaus in clean
structures, taking into account the lifting of spin
degeneracy, will be 1.5 × 1010 cm–2. This value almost
coincides with the measured width of the quantum pla-
teaus at filling factors  and 2 in the case of the
macroscopic samples with mobilities of (0.5–4) ×
106 cm2/(V s) [18]. The fine structure in DoS  with a
large number of narrow peaks at the edge of the Lan-
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dau band and its penetration deep into the plateau
 are experimentally discovered in the 2 ×

13-μm mesoscopic Hall bar [23], which is similar to
the behavior at  cm–2 in Fig. 2.

Figure 3 zooms into the periodic antiphase oscilla-
tions in DoS  and  in the central region of the
first Landau band. The oscillation period corresponds
to the addition of approximately 2.5 electrons to the
scattering region, which will be discussed below.

The distributions of the local density of states
LDoS  and current density  show the sim-
plest pattern for the dips of DoS, when

 (examples in Figs. 4a, 4b). The
usual edge states in the form of narrow lines of
increased LDoS at the channel edges are seen, corre-
sponding to the equilibrium current at the zero drift
voltage (Fig. 4a). The nonequilibrium current is pres-
ent only at the edge of the square, which corresponds
to a given sign of the difference in the chemical poten-
tial in the ideal supply channels. The distribution cur-
rent over y on this edge appears as a single narrow line,
and its direction is indicated by an arrow (Fig. 4b). The
space outside the specified lines is an insulator, since
LDoS  and  here are almost eight orders of
magnitude less. Weak smooth disorder in 
found by solving the three-dimensional electrostatic
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Fig. 3. (Color online) Density of states DoS  and  versus the density of the 2DEG corresponding to the region inside the
dotted rectangle near the center of the lower Landau band from Fig. 2.
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problem (Fig. 4c) does not manifest itself on these
lines and in the area of the insulator.

The situation changes qualitatively for states corre-
sponding to the region of periodic oscillations of the
conductance near the center of the lower Landau band

. This is shown in Figs. 4d–4f.
The comparison with Fig. 4c shows that electrons at
the Fermi level fill only the network of LDoS lines
(Fig. 4e) coinciding with the contours of the potential

. The widths of curvy lines of LDoS
are determined by the magnetic length. Between the
lines, LDoS  drops by orders of magnitude. Note
that a similar network in LDoS was observed experi-
mentally, but for a stronger and less smooth disorder
[10]. The nonequilibrium current in Figs. 4d and 4f
also f lows along the zero-potential contours. Unlike
Fig. 4b, it f lows in two opposite directions, as mani-
fested by the split-line current density J shown with
small arrows (the direction of the arrows can be seen at
magnification; see the supplementary materials). This
effect is explained by the low drift velocity of the elec-
tron. In this case, the velocity of circular motion of the

− ω < δ�F c rms/2E U
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electron  cm/s is 50 times higher than the
drift velocity. It can be seen that LDoS is inhomoge-
neous on the potential contours because of both
smooth and abrupt changes in the magnitude and
direction of the drift velocity. If electrons with increas-
ing density fill only nondegenerate quasidiscrete lev-
els, then resonances follow with a period correspond-
ing to the addition of two electrons to the entire simu-
lated area. A simple calculation for a Y junction of
one-dimensional conductors [29] shows that the aver-
age period in n can increase to 2.5 electrons.

In addition to Figs. 4d–4f, Figs. 4g and 4h demon-
strate the universality of the effect of electron motion
along the  contours for the states near the
center of the Landau band. In this case, the band is the
second one and the conductance is slightly lower than

. Lines of the local density of states are now
split (two maxima of probability density). Note that a
similar double-peak structure of the curvy LDoS lines
was recently observed experimentally at less smooth
disorder [11]. The J lines in Fig. 4h, as well as in

ω ≈ 6
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Fig. 4. (Color online) (a, e, g) Patterns of the local density of states and (b, d, f, h) nonequilibrium current in the scattering region.
(a, b) Case of the deepest dip of the density of states in Fig. 2a (n = 2eB/h, , G = 2e2/h): (b) the usual edge state with
the unidirectional current in the direction indicated by the arrow. (с) Effective potential  used to plot Figs. 2 and 3.
(e) Example of increased LDoS lines running along the  contours for states near the center of the lower Landau band

with  and . (d, f) Examples of high current density lines J running in opposite directions along the

 contours. (d) Case  at  cm–2 corresponding to the narrow peak in Fig. 3. (f) Case

 at  cm–2 corresponding to the narrow dip. (g, h) State near the center of the second Landau

band with  and . Double lines of increased LDoS and double lines of opposite currents, indicated
by arrows, run along the  contours.
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Figs. 4d and 4f, consist of two countercurrents. It is
shown in the supplementary materials that similar
countercurrents exist at the edge of structures, both at
a stronger disorder and in the absence of disorder.
They are caused by the rapid motion of a particle
around the circle whose center slowly drifts. The edge
JETP LETTERS  Vol. 112  No. 3  2020
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states appear in the form of countercurrents when the
electrons populate approximately half of the Landau
level (the drift velocity is close to zero) and are then
transformed to unidirectional currents as the Landau
level becomes almost fully populated (the drift velocity
is high). The supplementary materials also show that
narrow peaks at the edges (tails) of the Landau bands
correspond to localized states in the form of ring cur-
rents that coexist with the edge current. Together with
Figs. 2–4, this refines the predictions of the penetra-
tion of quantum plateaus  into the region of local-
ized states [3, 8].

We tested the stability of the conductance plateau
under the variation of B from 1 to 3 T, change in the
sample size from 1 to 3 μm, and variation of the poten-
tial parameters. If disorder was kept long-range and
less than  in magnitude, the strict plateaus of 
deeply penetrated into the Landau bands. However,
this effect disappeared at a fixed B value when long-
range disorder was replaced by short-range one with
the conservation of . Finally, as shown in the
supplementary materials, the increase in the channel
width to 3 μm in the absence of disorder sharply nar-
rows the quantized conductance plateaus and, there-
fore, destroys the QHE.

To summarize, at weak long-range disorder, the
fine structure of the density of states in the quantum
Hall effect has been numerically studied. In the cen-
tral part of the Landau band, one-particle currents
flow along the zero-potential contours in two opposite
directions, which is associated with the slow drift of
the electron. At the edges of the Landau band, the cir-
cular currents of the localized states inside the sample
coexist with the edge currents at the sample boundar-
ies. The quasiperiodic oscillations in the density of
state correspond to the addition of two electrons to the
scattering region. The widths of the conductance
plateau and transition regions agree with the measure-
ments.
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