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In general, to avoid a singularity in cosmological models involves the introduction of exotic kind of matter
fields, for example, a scalar field with negative energy density. In order to have a bouncing solution in classical
General Relativity, violation of the energy conditions is required. In this work, we discuss a case of the bounc-
ing solution in the Brans–Dicke theory with radiative f luid that obeys the energy conditions, and with no
ghosts.
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1. INTRODUCTION

One of the main drawbacks of the standard cosmo-
logical model is the existence of an initial singularity.
Singularities are a common feature in different appli-
cations of General Relativity (GR) when matter fields
obey reasonable energy conditions, called normal
fields. Hence, the avoidance of a singularity generally
implies the introduction of exotic matter fields, such
as phantom fields (i.e., a scalar field with negative
energy density). However, there are situations where
normal fields may also lead to the avoidance of singu-
larities if some nontrivial coupling is introduced. This
implies that the matter sector must contain more than
one component which interacts directly among them-
selves. Many nonsingular solutions in nonminimal
coupled theories are also obtained due to the presence
of fields which exhibit a phantom behavior when the
theory is formulated in terms of a minimally-coupled
system.

The purpose of this note is to call attention to a
nonsingular model with f luids that obey the energy
conditions and with no ghosts is possible even in the
simplest scalar–tensor theory, the Brans–Dicke the-
ory. We will essentially analyze the solutions deter-
mined by Gurevich et al. [1] for a f lat homogeneous
and isotropic Universe. Our goal is to identify some
properties of these already known solutions which, to
our knowledge, have not been studied in some of their

aspects.1 These properties may be relevant for the con-
struction of a coherent and realistic cosmological
model, in particular for solving the singularity problem.

The Brans–Dicke theory of gravitation is one of
the most important alternative theories to GR, where
the inverse of the gravitational constant G is replaced
by a scalar filed φ, which can vary in space and time. It
was developed by C. Brans and R.H. Dicke [5] in order
to implement the Mach’s principle in a relativistic the-
ory. The theory has received recently much attention
of the scientific community [6–12].

The paper is organized as follows. In Section 2, we
describe the system, its equation of motion, and review
the solutions for the radiative case studied by Gurevich
et al. In Section 3, we analyze the bouncing properties
of the solutions. In Section 4, we discuss the energy
conditions and develop the perturbation over specific
background. In Section 5, we give our final remarks.

2. CLASSICAL EQUATIONS OF MOTION
AND GUREVICH ET AL. SOLUTIONS

The Brans–Dicke theory is defined by the action

(1)

1 For a similar analysis of the solutions in the Brans–Dicke the-
ory, see [2–4].
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where φ is a scalar field,  is the matter Lagrangian
and ω is a free parameter. This is the prototype of a
scalar–tensor theory where the nonminimal coupling
occurs between the gravitational term and the scalar
field. The main goal of the Brans–Dicke theory was to
introduce a varying gravitational coupling through the
scalar field φ. It can be seen as the first example of
Galileons and Horndesky-type theories [13].

Local tests limit the value of the parameter ω to be
very large [14], what in principle renders the theory
essentially equivalent to GR. However, extensions of
the Brans–Dicke theory leave place for a varying cou-
pling parameter ω. The Horndesky class of theories
cover all possibilities without Ostrogradsky instabili-
ties including the Brans–Dicke theory in its tradi-
tional form. This opens the possibility for small values
of the coupling parameter in the past (which can be
even negative), evolving to a huge value today. Also,
the low energy effective action of string theory leads to
Brans–Dicke theory with  [15]. Brane configu-
rations may allow even more negative values of ω. In
evoking this connection, we have mainly in mind the
domain of application of the string effective theory
which is the primordial Universe.

The Brans–Dicke theory field equations read

(2)

(3)

(4)

where w is a constant. For a f lat Friedmann–Lema -
tre–Robertson–Walker metric

(5)

the field equations reduce to
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Gurevich et al. [1] determined the general solution
for the cosmological isotropic and homogeneous f lat
Universe with a perfect f luid with an equation of state

, where α is a constant such that . The

general solution for  (a case where the energy

conditions for the scalar field are satisfied) reads

(10)

(11)

with the definitions,

(12)

(13)

where , and  are arbitrary
constants, with . The time coordinate θ is con-
nected with the cosmic time t by

(14)

For , where there is violation of the energy

conditions for the scalar field in the Einstein frame, as
it will be discussed below, the solutions read

(15)
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where
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In the case , the condition to have a regular

bounce can be expressed by requiring  (the scale
factor is infinite at one asymptote),  (the
scale factor is infinite at another asymptote) and

 (the cosmic time varies from  to ).
These conditions imply that a regular bounce may be

obtained for  and . The case

 is quite peculiar, and contains no bounce [7].
We will be interested here mainly in a scenario for

the early Universe. Thus, we will consider in detail the
radiative universe. The Gurevich et al. solution for the

= αρp ≤ α ≤0 1

ω > − 3
2

+ −
+ −θ = θ − θ θ − θ ,0( ) ( ) ( )r ra a

+ −
+ −φ θ = φ θ − θ θ − θ ,0( ) ( ) ( )s s

+ −
ω ω= , = ,

σ + ω σ ± + ω∓
2 23[ 1 ] 3[ 1 ]
3 3

r r

+ −

+ ω ± + ω
= , = ,

σ + ω σ ± + ω

∓

∓

2 21 1 1 1
3 3
2 21 1
3 3

s s

σ = + ω − α1 (1 ) ±, φ , θ0 0a
+ −θ > θ

α= θ.3dt a d

ω < − 3
2

( ) + −α ω / ± θ /
+−= + θ ,θ + θ 2 2 (1 (1 ) ) 2 ( )

0[ ] A f Aa a e

( ) ( )− α / ± −α θ / 
 +− 

φ = φ + θ ,θ + θ
(1 3 )2 6 1 ( )2

0

A f Ae

−

+

| ω | −  θ + θθ = , θ 

2 3( ) arctan
3

f

( ) ( )= − α + ω .− α 22 2 3 3 1A

ω > − 3
2

+ < 0r
+ −+ > 0r r

+α + <3 1 0r −∞ +∞

< α <1 1
4

− < ω ≤ −3 4
2 3

α = 1
JETP LETTERS  Vol. 110  No. 8  2019



REGULAR BOUNCING SOLUTIONS 525
radiative case ( ) is given by the following

expressions:

• :

(19)

(20)

• :

(21)

(22)
In these expressions,

(23)

η is the conformal time and  are constants such that
.

If we perform a conformal transformation of the
Brans–Dicke action such that , we re-
express it in the so-called Einstein’s frame

(24)

Thus, in the Einstein frame,  corresponds to an

ordinary scalar field with positive energy density,

while for , the kinetic term of the scalar field

changes sign, and it becomes a phantom field with
negative energy density. Remember that the radiative
fluid is conformal invariant.

3. ANALYSIS OF THE SOLUTIONS

For  the scale factor displays an initial singu-
larity followed by expansion, reaching  as

. Note that the radiative Universe of GR char-
acterized by

(25)

can be recovered from the above solutions if , in
the limit  when , or in the asymptotic
limit .

The GR behavior of the scale factor is also achieved
for . However, in this case, the scalar field (the
inverse of the gravitational coupling) varies with time,
and its variation depends essentially on the sign in the
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exponent in Eqs. (19) and (20). For the upper sign, we
find

(26)

(27)

and the scalar field decreases monotonically from
infinite to a constant (positive) value as the Universe
evolves. For the lower sign, the behavior of the func-
tions are given by

(28)

(29)

and the scalar field increases monotonically from an
infinite negative value to a constant positive value as
the Universe evolves: initially there is a repulsive grav-
itational phase. This can be considered as a Big Rip
type singularity since it occurs when  at finite
proper time.

Bounce solutions can be obtained from the Gurev-
ich et al. solutions in the radiative case if the lower sign

is chosen in Eqs. (19) and (20) for . How-

ever, there is a singularity at  for 

at , even if the scale factor diverges at this point.

On the other hand, if , the bounce

solutions are always regular, with no curvature singu-
larity.2 In this last case, there are two possible scenar-
ios (thanks to time reversal invariance):

(1) a universe that begins at  with ,
with an infinite value for the gravitational coupling
( ), evolving to the other asymptotic limit with

 but with φ constant and finite;

(2) the reversal behavior occurs for .
In both cases, the cosmic times ranges .

The dual solution in the Einstein frame for

 is given by 

(with ) and contains an initial singularity.
This can be considered as a specific case of “confor-
mal continuation” in the scalar–tensor gravity pro-
posed in [16].

2 Note that the gravitational coupling diverges, but only at infinite
cosmic time, where the scale factor is also infinite. One can
expect that instabilities (due to the anisotropic perturbations) do
not develop since, in this situation, anisotropies are suppressed
as they decay fast when the scale factor increases. This kind of
instabilities may be very relevant, however, if there is a change of
sign in the gravitational coupling at finite scale factor, as in the
case of [17].
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Fig. 1. (Color online) Behavior of the (from left to right) scale factor, scalar field, “effective” strong energy condition, and “effec-
tive” null energy condition (right) for .ω = − .1 43
For the special case  there is still no singu-

larity if we choose the lower sign. In this case, the scale
factor and the scalar field behaves

(30)

If , the Universe begins with ,
with φ constant and finite, while in the remote future

 and . If we choose the interval
, the scenario is reversed, and we get the

possibility to have a constant gravitational coupling
today.

For  and the upper sign the solutions exhibit

an initial singularity:

(31)

(32)

Similar features for the scale factor and the scalar

field are reproduced for . However, the scalar

field has a phantom behavior as already stated.

4. ENERGY CONDITIONS
AND PERTURBATIONS

An important aspect of these solutions concerns
the energy conditions. In general, in order to have a
bouncing solution, violation of the energy conditions
is required. The strong and null energy conditions in
General Relativity are given by

(33)

(34)

In order to use the energy condition in this form the
Brans–Dicke theory must be reformulated in the Ein-
stein frame. It is easy to verify that both energy condi-
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tions are satisfied as far as . This is consistent

with the fact that in the Einstein frame the cosmolog-

ical scenarios are singular unless . On the other

hand, in the original Jordan frame there are nonsingu-

lar models if . But in this range the scalar

field obeys the energy condition. The effects leading to
the avoidance of the singularity come from the non-
minimal coupling. We plot the “effective” energy con-
dition, represented on the left-hand side of Eqs. (33)
and (34), taking into account the effects of the non-
minimal coupling. If we consider only the left-hand
side of Eqs. (33) and (34), the effects of the interaction
due to the nonminimal coupling are included, and the
energy conditions can be violated even if the matter
terms do not violate them. In Fig. 1 we show the
expressions for these relations for some values of ω.

It is interesting to notice that, for the most usual
fluids employed in cosmology, the case of the radiative
fluid is the only one where the possibility of obtaining
a singularity-free scenario preserving the energy con-
ditions is possible, at least in the Brans–Dicke the-
ory.3 For a matter f luid ( ), the scale factor can be
expressed in terms of the cosmic time and behaves,
according the Gurevich et al. solution, as

(35)

 being integration constants such that . There
is a singular bounce for negative values of ω. In their
work, Gurevich et al. does not display explicitly the
solution for a vacuum equation of state ( ) but it

3 Also, with a f lat spatial section. For a non-flat Universe, a sin-
gularity-free scenario can be obtained even in General Relativity
if the strong energy condition (but not necessarily the null
energy condition) is violated. For analysis of bouncing solutions
in closed Universe with and without violation of the energy con-
ditions see [18–22].
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Fig. 2. (Color online) Behavior of the density contrast for k = (left panel) 0.01 and (center panel) 0.1. The normalization has been
chosen such that the final density contrast is equal to one. The right panel shows the wavenumber dependence of the spectral
index . All the figures were obtained for .sn ω = − .1 43
can be deduced from a general expression they write
down. For , the general solution reduces to

(36)

(37)

where θ is a parametric time, which is connected to
cosmic time through the relation . As in the
pressureless matter case, bounce solutions exist for
negative ω, but they are singular. Of course, in both
pressureless and cosmological constant cases singu-

larity free solutions are possible if  but this

implies a phantom scalar field.
Now, let us turn to perturbations. Using the syn-

chronous coordinate condition and particularizing the
expressions for a radiative f luid, the perturbed equa-
tions read

(38)
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In these expressions,
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Moreover, k is the wavenumber coming from the Fou-
rier decomposition and H is the Hubble function.

The evolution of scalar perturbations in the Brans–
Dicke theory has been studied in [23], and some fea-
tures connected with the Gurevich et al. solutions have
been displayed in [24]. For the bouncing regular solu-
tions analyzed here, it is natural to implement the
Bunch–Davies vacuum state as the initial condition.

= −ρp
±

+ −θ = θ − θ θ − θ ,∓0( ) ( ) ( )ssa a

±

+ ω ± + ω
= ,

+ ω

21 2 1
3

2(5 6 )
s

−= θ3dt a d

ω < − 3
2

φπ+ = δ − λ + λ + + ω λ,
φ φ

�

�� ��� �

162 ( ) 2 4 (1 )h Hh

 φ φλ + + λ + λ = , φ φ 

� �
�

�� �

2

23 2
2

k hH
a

( )δ + θ − = ,
�

�

4 0
3 2

h

θ + θ = δ.�

2

24
kH
a

δρ δφ= , δ = , λ = , θ = ∂ δ .
ρ φ2

ikk
i

kh u
a

JETP LETTERS  Vol. 110  No. 8  2019
However, it is known that in bounce scenario a f lat or
almost f lat spectrum requires a matter dominant
period in the contraction phase. This is not obviously
the case for the regular Gurevich et al. solutions which
is verified for a radiative f luid.

In Fig. 2, we display the evolution for the density
contrast for  and  (in units of the cur-
rent Hubble scale), as well as the dependence of the
spectral index  as a function of the wavenumber k.
The spectral index is defined as usual

(43)

We display the evolution of the perturbations and
the dimensionless power spectrum which exhibits a
clear disagreement with the observations (compare
with similar results obtained in [25]). Since the model
studied here requires a single radiative f luid such
somehow negative result could be expected from the
beginning.

5. DISCUSSION

In this work, we have shown that regular bounce
solutions without any phantom field, even in the Ein-
stein frame, can arise in Brans–Dicke theories con-
taining f luids obeying the equation of state  if

, and a Brans–Dicke parameter  lying in

the interval , enlarging the parameter

space in which such cosmological models can emerge
in this class of theories.

We analyzed in detail the radiative case with .

A bounce can be obtained if we choose the lower sign

in Eqs. (19), (20) for  Moreover, for

 the bounce is regular with no curvature

singularity, but for  there is a singularity at

, even if the scale factor diverges at this point. In

= .0 01k = .0 1k
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the case of  there is still no singularity if we

choose the lower sign, and there is an initial singularity
for the upper sign. The solutions Eqs. (21), (22) with

 have a similar behavior, but with a phantom

field in the Einstein frame.
It is generally expected that the violation of the

energy conditions is required in order to have classical
bounce solutions, even in the nonminimal coupling
case: in this situation, phantom fields would appear in
the Einstein frame. We discussed this point in detail
for the case of the radiative f luid in the Brans–Dicke
theory (with a f lat spatial section), where we have
shown that it is possible to obtain nonsingular solu-
tions preserving the energy conditions even in the Ein-
stein frame, and we have shown that this property

holds for any Brans–Dicke theory in which ,

and . This generalization allows the pos-

sibility of constructing more involved and realistic reg-
ular bouncing solutions, in which the power spectrum
of cosmological perturbations could be in accordance
with present observations. This is one of our goals of
our future investigations in this subject.
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