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Studies of the scattering of light on systems of identical atoms under conditions of their quantum degeneracy
have been reviewed. The formation of a periodic spatial structure caused by the interference of material waves
is responsible for coherent resonance scattering similar to Bragg diffraction on regular spatial inhomogene-
ities. The interference of macroscopic material waves that is observed in experiments with a Bose–Einstein
condensate forms a dielectric medium in the region of optical transparency of the sample that has the prop-
erties of a photonic crystal. Common characteristics and differences between the scattering of light on atomic
systems under quantum degeneracy conditions and scattering on one-dimensional atomic lattices where the
positions of atoms are described by classical statistics have been discussed.
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1. INTRODUCTION

The study of physical systems allowing the con-
trolled governing and exchange of microscopic states
between light and a material carrier is very necessary
for the development of quantum information technol-
ogies. The importance of solving the problem of a
quantum interface has long been realized, as seen in
reviews [1–5], but progress in this field is not too
impressive. Theoretical estimates indicate that atomic
ensembles are promising for experimental develop-
ments. There are certain achievements in both experi-
mental observation and theoretical description of
cooperative and coherent processes in such ensembles
[6]. In quantum informatics, atomic systems are
promising for the creation of quantum repeaters [2, 3]
and for the development of quantum memory ele-
ments to create a single-photon source on demand [4,
5], which is a necessary element of a quantum optical
processor. To successfully create a quantum interface
for the case of interaction of optical radiation with sys-
tems of cold atoms, it is necessary, first, to overcome a
fundamental difficulty associated with the quantum
electrodynamic interaction of single atoms with a sin-
gle photon and, second, to reduce the negative effect
of diffraction divergence of a light pulse focused on an
atomic system scale, which also reduces the efficiency
of the interaction.

In the last decade, new experimental capabilities
associated with the development of methods for the

optical control of quantum states of systems of
ultracold atoms under their quantum degeneracy con-
ditions have been revealed. Such systems are no longer
unique laboratory objects. For example, the authors of
[7] describe an experiment where an ensemble of 87Rb
atoms was cooled to a temperature of about tens of
picokelvin. Optical monitoring methods are success-
fully developed to study processes of preparation and
evolution of an atomic ensemble in a Bose–Einstein
condensate (BEC) state [8, 9]. The interaction of
atoms in the BEC state with optical cavity modes is
used to control the spatial configuration of atomic
ensembles [10, 11]. Transitions between different types
of quantum degeneracy caused by the Fermi–Dirac
and Bose–Einstein statistics in two-dimensional sys-
tems of cold atoms were studied in a number of exper-
iments [12]. Methods developed for the optical control
of states of atoms under quantum degeneracy condi-
tions have innovative applications in problems of
metrology and atomic interferometry [13–16].

The interaction of optical radiation with atoms can
be significantly enhanced by involving cooperative
effects that are manifested in ensembles of systems of
atomic scatterers and effectively increase the coupling
constant. This is brightly demonstrated by the coher-
ent enhancement of the scattering of light on ordered
and periodic structures that is caused by the Bragg dif-
fraction mechanism and was observed in a number of
experiments [17–25]. It is important that such a
mechanism of strong coherent scattering is observed
714
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in a wide spectral range and for atomic systems in dif-
ferent physical states.

In this review, we demonstrate that specific Bragg
scattering on spatial inhomogeneities generated by
interference of the order parameter is possible in the
case of quantum degeneracy and the transition of an
atomic gas to the BEC state [17, 18]. Under laboratory
conditions, it is convenient to prepare periodic struc-
tures (atomic lattices) based on arrays of neutral atoms
formed by optical traps in free space [19–22] or near a
dielectric nanowaveguide [23–25]. The matter density
modulation is a common factor responsible for the
cooperative nature of the interaction of light with such
physically different states of matter and for the possi-
bility of coherent enhancement of scattering in certain
directions. In this review, we present both common
properties and qualitative differences between the
optical properties of ordered systems of scatterers in
different physical states. In particular, interference of
material waves, which is observed in experiments with
the BEC, forms in the optical transparency region a
unique dielectric medium with the properties of a
photon crystal that cannot be reproduced by an
ensemble of neutral atoms with a classical spatial dis-
tribution.

The process of scattering is described within the
microscopic quantum theory of scattering in multi-
particle systems described in [6, 26–28]. Such an
approach makes it possible to correctly take into
account internal interactions and interatomic spatial
correlations, which are important for the consistent
description of the cooperative dynamics of the coher-
ent scattering and spontaneous decay in an atomic
subsystem. In particular, a closed equation was derived
for a polariton propagator of a single-particle optical
excitation in the BEC, which describes important cor-
rections for the matter density in the quasi-energy
structure of a system caused by both quasistatic and
radiative interactions [26, 28]. Cooperative manifesta-
tions in the scattering of light by atomic systems that
are in the BEC state and are described in the ideal gas
approximation were considered in [29, 30].

In Section 2, we describe the method of calcula-
tion. In Section 3, the calculations for the scattering of
light by an atomic system in the quantum degeneracy
state are compared to those for an atomic chain that is
located near a dielectric nanowaveguide and is inter-
preted as an array of classically distributed point scat-
terers.

2. MICROSCOPIC DESCRIPTION 
OF THE SCATTERING OF A PHOTON

BY AN ATOMIC ENSEMBLE

In this section, we briefly present the basic princi-
ples of a microscopic approach to the description of
the scattering of a single photon by a multiatomic
ensemble.
JETP LETTERS  Vol. 108  No. 10  2018
2.1. General Formalism of the Scattering Problem

The consistent quantum-mechanical description
of the scattering of a single photon on an atomic
system is based on the formalism of the T-matrix
defined as

(1)

Here,  is the total Hamiltonian, where 
is the unperturbed Hamiltonian of the atomic subsys-
tem and field and  is the interaction operator. Scat-
tering described by the transformation of the initial
state  to the final state  is characterized by the dif-
ferential cross section. This cross section can be
expressed in terms of the scattering amplitude, which
is the corresponding T-matrix element depending on
the initial energy:

(2)

The initial state of the system  includes the
photon state characterized by the wave vector k, fre-
quency , and polarization vector e and
the state of the atomic subsystem . The structure of
this state depends on physical conditions: atoms can
be considered as objects classically distributed in space
or can be in a quantum degeneracy state, which
requires the inclusion of the physical identity of atoms.
In the limiting case of total degeneracy, for a rarefied
medium with weak internal interatomic interactions,
the state  is a collective state of N atoms
in the form of the BEC, which is described within
Bogoliubov theory [31]. This state is primarily consid-
ered in this subsection.

The final state  is specified by a simi-
lar set of quantum numbers, but the atomic subsystem
in the general case is described by the perturbed state
of the condensate  for inelastic channels and the
solid angle  is related to the direction of the wave
vector of the scattered photon  with the polarization

. The quantization volume  appears in the expres-
sion for the cross section because of the structure of
interaction operators specified in the secondary quan-
tization representation. In view of the unitarity of the
scattering matrix, according to the optical theorem,
the total scattering cross section can be expressed in
terms of only one diagonal T-matrix element:

(3)

The optical theorem is convenient for the calculation of
the total scattering cross section in complex systems.
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The interaction operator  in Eq. (1) is defined in
the dipole approximation and can be written in the
secondary quantization representation

(4)

Here,  is the matrix element of the th dipole
moment component of the atom; the subscripts n and
m specify the excited and ground states of the atom,
respectively;  is the μth component of the electric
field operator; covariant representation is used for vec-
tor and tensor quantities; and  and  are the
annihilation and creation operators of an atom at the
point r in the ground m and excited n internal states,
respectively. The application of the dipole approxima-
tion in atomic systems with a density higher than one
atom in the volume of the radiation wavelength faces
certain difficulties (see [6, 32]). Our consideration is
in essence limited by the model of weakly nonideal
gas, where the internal interaction remains neverthe-
less significant and can be taken into account and
described by the Gross–Pitaevskii equation (for
details, see the remark in [28]).

We consider the BEC consisting of two-level atoms
with the ground state  and excited state , so that
the quantum numbers  and  can be
identified with the projection of the angular momen-
tum of a single atom in the excited and ground states,
respectively. For the ground state of the system exist-
ing in the condensate phase at zero temperature, we
accept

(5)
where  is the order parameter (the so-called
“wavefunction”) of the condensate (see [33]). We
consider the BEC as a macroscopic object so that the
order parameter is insensitive to any small change in
the number of particles in the condensate. Then, the
scattering amplitude is given by the integral expansion

(6)

where  is the energy of the initial state of the con-
densate consisting of  particles.

The scattering amplitude is determined by the
Green’s function (propagator), which describes the
propagation of a single optical excitation (polariton) in
the condensate containing  particles

(7)
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This function is the time-ordered production of Ψ-
operators in the Heisenberg representation averaged
over the condensate state and field vacuum:

(8)
The Ψ-operators are “dressed” because of interaction.
It is assumed that the optical interaction is quasireso-
nance so that the frequencies ω and  are close to the
atomic transition frequency .

Expression (6) for the scattering amplitude
includes the order parameter, thus corresponding to
the most methodically important case of the descrip-
tion of atoms as a degenerate quantum gas. In the
opposite limit of the thermal ensemble with a tem-
perature much higher than the critical value, atoms
can be considered as scatterers located at certain spa-
tial positions with the subsequent averaging over the
thermal distribution (see [34, 35]). In this case, the
order parameter and integration with respect to r and

 in Eq. (6) for the scattering amplitude should be
replaced by sums over the atoms of the ensemble
(see [6]).

2.2. Diagrammatic Expansion of the Green’s Function
The polariton propagator given by Eq. (7) can be

constructed by the perturbation series expansion of
-operators and the rearrangement of terms by means

of the Feynman diagram technique (see [28, 35]). The
result is the diagrammatic representation of the Dyson
equation

(9)
where the double line with the arrow is the desired
propagator, which is assumed to be dressed by all
interaction processes, and the vertical arrows incom-
ing to a vertex and outgoing from a vertex of the dia-
gram are the order parameter and its complex conju-
gate, respectively. The corresponding block forms the
self-energy part of the equation that physically
describes the successive coherent conversion of exci-
tation between the field and atom, which is accompa-
nied by the recovery of the condensate state. This
coherent process decays because of the possibility of
spontaneous scattering and transition of the atom to
the above-condensate state because of acquiring a cer-
tain recoil momentum.

The spontaneous decay mechanism is included in
Eq. (9) through an incomplete polariton propagator,
which is shown by the separated solid line and satisfies
the Dyson equation separately including the contribu-
tion of spontaneous processes

(10)
This equation should be considered together with the
equation for the Green’s function for the time-ordered
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vacuum average of the product of Heisenberg opera-
tors of the electric field

(11)

These two diagrammatic equations constitute a closed
system and should be solved together. This means that
optical excitation produced in the condensate can
result in spontaneous emission and this process is sim-
ilar to incoherent scattering in the disordered gas with
the same density. Indeed, Eq. (10) has a structure
completely similar to the decay of the excited atom
placed in a disordered medium of a weakly nonideal
gas. Diagrammatic equation (11) formally determines
the Green’s function of the photon in such a dielectric
medium [28, 33, 36] and the permittivity of the con-
densate.

2.3. Passage to a One-Dimensional Description

The solution of Eqs. (9)–(11) in three-dimensional
geometry is a very difficult problem; the detailed
description of the scheme and difficulties of the calcu-
lation can be found in [28]. The real calculation can be
performed only for a one-dimensional system. Never-
theless, this calculation makes it possible to discuss a
number of interesting physical effects caused by
coherent scattering by periodic structures. We attri-
bute this type of coherent scattering to the Bragg dif-
fraction mechanism and to the modulation of the per-
mittivity of matter (see Section 3.3).

Passage to a one-dimensional scattering problem
implies the consideration of a layer of matter infinite
in the transverse direction. We pass to the Fourier
transform in the integrand considered now as a func-
tion of the energy and longitudinal coordinates z and
z'. In view of the Dirac δ function of the transverse
coordinates in the polariton propagator, the calcula-
tion of integral (6) over these transverse coordinates

 and  gives the factor , which is par-
tially compensated by a similar factor in the normal-
ization volume , and remains the nor-
malization length  in the one-dimensional
problem.

As a result, the T-matrix element for the elastic for-
ward and backward scattering has the form

(12)

where the frequency and polarization of the scattered
photon are assumed to coincide with the respective
parameters of the incident photon, i.e.,  and

; and we redefine  to emphasize that the
initial and final states for this type of scattering are
equivalent.
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It is convenient to pass from the T-matrix to the S-
matrix, which relates the initial and final quantum
states of the system (see [32, 37]), as

(13)

One-dimensional scattering is described by the trans-
mission , ref lection , and loss  coeffi-
cients directly determined by the S-matrix as

(14)

which can be determined by solving Eqs. (9)–(11) in
one-dimensional geometry.

3. BRAGG DIFFRACTION
IN ONE-DIMENSIONAL STRUCTURES

In this section, we present the solutions of scatter-
ing equations for the case of periodic spatial struc-
tures. We consider different types of spatial modula-
tion of the density of the medium, which can be due
both to the modulation of the order parameter under
quantum degeneracy conditions and directly to the
ordered arrangement of atoms considered as point
scatterers classically distributed in space. In the latter
case, we address the scattering of light propagating in
a mode of a one-dimensional dielectric waveguide
with a subwavelength diameter by an ordered atomic
chain located near its surface. Strong Bragg scattering
in such a system was observed in experiments [24, 25]
and the microscopic theory of this scattering was pre-
sented in [27]. We focus on the comparative analysis of
scattering for these two physical examples in order to
reveal both common properties and important differ-
ences associated with the fundamental difference of
the classical and quantum descriptions of the spatial
state of atoms.

3.1. Scattering of Light by the BEC
The fragmentation of the Bose–Einstein conden-

sate accompanied by the strong coherent scattering of
light by appearing spatial inhomogeneities of the order
parameter was observed in a number of experiments
[17, 18]. Within the one-dimensional model, we con-
sider the fragmentation of the condensate as a result of
the interference of two counterpropagating objects of
the BEC in their center-of-mass system:

(15)
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Fig. 1. (Color online) Geometry of the scattering of light
on two fragments of the BEC that propagate with respect
to each other and demonstrate the effect of nonlinear
interference of material waves.

Fig. 2. (Color online) (Upper panel) Transmittance and
(lower panel) reflectance versus the detuning of probe
radiation Δ = ω − ω0 for an inhomogeneous atomic den-
sity distribution in the BEC specified by the order param-
eter given by Eq. (15) with Δq = k0 = ω0/c, where ω0 is the
resonant frequency of the atomic transition for the geom-
etry shown in Fig. 1. The dashed lines are reference depen-
dences for the transmittance of light through an optically
dense layer of a nondegenerate gas with the same density as
the considered condensate. (Reprinted from [28] with per-
mission of the American Physical Society.) 
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Here, the material wave is described by the order
parameter , and the interference of two wave frag-
ments  and  forming it is responsible for the
appearance of strong oscillations of the density with a
spatial step of  in their overlapping region char-
acterized by the macroscopic scale L. The spatial den-
sity configuration  thus appearing is illustrated
in Fig. 1. This spatial density profile observed in the
experiment [38] is an approximate solution of the
Gross–Pitaevskii equation, is an example of nonlinear
interference, and implies the motion of fragments at a
quite high relative velocity.

The scattering of light in the regime of interference
of material waves is very sensitive to the phase differ-
ence between complex functions  and ,
which is determined by the relative momentum of the
condensate fragments (per atom) . The velocity
of motion of fragments determines the scale of spatial
oscillations of the BEC, which can be comparable with
the wavelength of scattered radiation λ. As a result, the
macroscopic BEC sample whose order parameter is
modulated with a step comparable with the optical
wavelength  can be considered as a
spatial lattice whose density has spatial modulation

. The scattering (reflection within the
one-dimensional model) of light through Wulff–
Bragg’s diffraction mechanism will be observed in
such a sample. The strong reflection of light from the
formed diffraction lattice of the sample is illustrated in
Fig. 2.

Figure 2 shows the transmittance  and reflec-
tance  of a single photon as functions of its frequency
detuning  from the resonant frequency of
the atomic transition  presented in
units of the spontaneous atomic decay rate γ.1 These

1 Strictly speaking, as shown in [28], because of the internal inter-
action, the transition frequency should be reduced by the chem-
ical potential of the condensate  to  and the
scattering spectrum should be redshifted. In view of the small-
ness of the chemical potential , the corresponding cor-
rection is insignificant in the considered approximations.

Ξ( )z
+Ξ ( )z −Ξ ( )z

Δ∼1/ q

Ξ 2( )z

+Ξ ( )z −Ξ ( )z

Δ�2 q

π Δ λ∼ !2 / q L

π Δ λ∼/ /2q

7

5

Δ = ω − ω0

ω = = π λ0 0 02 /ck c

μ0 ω = ω − μ� �0 0 0/

μ γ�!0
spectral dependences are presented for the longitudi-
nal dimensions L = 10λ0, 30λ0, and 50λ0, when the
momentum of each of the condensate fragments per
atom is . Under these conditions,
the distance between neighboring maxima in the den-
sity modulation  is half the wavelength ,
which is optimal for the coherent enhancement of
reflected light.

The spectral profile of the reflectance shown in the
lower panel of Fig. 2 exhibits a very nontrivial behavior
in different spectral ranges. Two main spectral ranges
are seen. The first range is the resonance reflection
region, where all considered samples reflect light
almost identically. The second range is the asymptotic
region far from the atomic resonance, where the
detuning dependence of reflected light is strongly
oscillating, oscillations are enhanced, and the spectral
reflection range expands at the elongation of the sam-

Δ = = π λ� � �0 02 /q k

Ξ 2( )z λ0/2
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Fig. 3. (Color online) Geometry of the scattering of light
propagating along a dielectric waveguide with a subwave-
length diameter by an atomic chain with the period d ~
λwg/2. The atoms are located at the distance ρ − a from the
waveguide surface and their spins are oriented in the direc-
tion of light propagation. The optical transition σ− in the
atomic energy structure interacts predominantly with the
fundamental mode HE11 of the waveguide in the left polar-
ization. (Reprinted from [27] with permission of the
American Physical Society.) Fig. 4. (Color online) Spectral dependences of the (a)

transmittance and (b) reflectance calculated for the scat-
tering of light by a chain of five atoms separated by the dis-
tance d = λwg/2 and spaced from the waveguide surface at
the distance ρ − a = (thin blue lines) 0.5a and (thick red
lines) a. For the case ρ − a = 0.5a, the partial contributions
of the Rayleigh scattering channel with the conservation of
(lower dashed lines) the polarization mode and (upper
dashed lines) both polarization components. The solid line
is the total contribution including Raman scattering chan-
nels (see Fig. 3). (Reprinted from [27] with permission of
the American Physical Society.)
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ple. It is very unusual for the spectral dependence of
the reflectance that the scattering intensity increases
far from resonance, where the weakening of the inter-
action of light with matter should seemingly be
expected.

3.2. Scattering of Light by an Atomic Chain

As another example for comparison, we consider a
system shown in Fig. 3, implying the one-dimensional
scattering of light by atoms considered as point scatter-
ers with a classical spatial distribution. Light propa-
gates along a dielectric waveguide whose diameter 2a
is comparable with the radiation wavelength and the
external field is scattered by a chain of atoms that are
located along the waveguide, are spaced by the dis-
tance , and have the internal orientation of the
spin moment in the direction of radiation propagation.
The optical atomic transition  approximately (in the
paraxial approximation) corresponds to the waveguide
mode in which radiation propagates. Atoms are
ordered along the waveguide with the period

, where  is the wavelength of the wave-
guide mode differing from the vacuum value for the
same frequency of light. The chosen 
transition involving a nondegenerate excited state cor-
responds to the configuration of levels existing in the
hyperfine structure of 87Rb. It allows a simplified
description of the excited atomic state by the renor-
malization of the radiative decay constant (for details,
see [27]).

ρ ∼ a

−σ

λ∼

wg /2d λwg

= → =0 1 0F F
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Figure 4 shows the calculated transmittance and
reflectance of light through a chain of five atoms for
two different distances  from the waveguide sur-
face and for different Rayleigh and Raman scattering
channels. A noticeable reflection of light in the back-
ward direction is observed because of the constructive
interference of waves scattered by individual atoms.
Such an interpretation based on Wulff–Bragg’s condi-
tion is only qualitative, implying a classical description
of positions of atoms. The real calculation performed
in [27] involves the microscopic evaluation of the
resolvent of the Hamiltonian with the interaction
operator given by Eq. (4) and the construction of the
scattering T-matrix.

The scattering of light near atomic resonance is
strong, exceeding scattering by a similar disordered
structure. However, in contrast to scattering by a spa-
tially modulated degenerate gas, the spectral depen-
dences in this case are monotonic and the scattering
intensity is concentrated in the spectral vicinity of
atomic resonance and is much lower than that in the
case of the BEC.

ρ − a
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3.3. Comparison of the Results
What is the reason for such large differences in the

spectra of radiation scattered by the BEC and atomic
chain? To answer this question, we use the following
diagrammatic relation between the polariton and pho-
ton propagators:

(16)
First, this relation emphasizes that the atomic and
field subsystems equivalently contribute to the forma-
tion of optical excitation in the condensate. Second,
the diagram on the left side reproduces the structure of
the scattering amplitude given by Eqs. (6) and (12).
According to the Huygens–Fresnel principle [39], the
right side of Eq. (16) describes the scattering of light in
matter with the deviation of its propagation in free
space.

Using the above relation, the solution of the one-
dimensional scattering problem can be related to the
solution of the one-dimensional wave equation

(17)

where  is the positive-frequency complex
component of the electric field propagating in the
medium with the permittivity . This permit-
tivity is a strongly oscillating function of the z coordi-
nate. In the resonance case, the quantum spatial mod-
ulation of the order parameter and the corresponding
modulation of the absorption coefficient are qualita-
tively simulated by a periodic structure of the atomic
chain and both processes can be naturally attributed to
diffraction under Wulff–Bragg’s condition.

However, the picture is significantly different at
large detunings from resonance. In this case, the func-
tion  becomes real and close to unity but
includes small rapidly oscillating correction to the
average vacuum value. For an extended medium, this
leads to the manifestation of properties of the photonic
crystal and to the formation of the band structure near
the atomic resonance frequency. At relatively small
detunings, but under the condition , a periodic
dispersion dependence of the frequency on the wave-
number appears in the wing of resonance. As a result,
the incident wave excites two modes propagating in
the opposite directions. Such a picture exists in a wide
spectral range and, in view of the finiteness of the
sample, leads to a complex oscillatory dependence of
the reflectance and transmittance, which is observed
in the lower panel of Fig. 2. Since the sample consid-
ered in the numerical calculation is finite, it is impos-
sible to follow the structure of bands and the formation
of the band gap, which should be observed at large
detunings .

Such a picture of the reflection of light cannot be
reproduced by the configuration of atoms considered

.

ω+ , ω = ,% %e

2 2

2 2( ) 0d z
dz c

= , ω% %( )z

= ,ωe e( )z

= , ωe e( )z

Δ γ@

/Δ λ π γω∼

3 1 2
0 0( ( /2 ) )n
as classically distributed scatterers (see Fig. 3). It
would be required to prepare an atomic chain with a
much higher linear density and the effective dielectric
constant would be significantly larger than unity,
which is typical of photonic crystals in semiconductor
systems (see [40]). We also emphasize that the density
modulation in the condensate is due to a deeply quan-
tum effect of nonlinear interference between material
waves and the internal motion of condensate layers.

4. CONCLUSIONS

The diffraction of electromagnetic waves scattered
on periodic atomic structures has been known for
more than a century. This phenomenon, later called
Bragg diffraction, was studied at the beginning of the
20th century by several research groups, in particular,
German physicist Max Theodor Felix von Laue, Brit-
ish physicists William Henry Bragg and William Law-
rence Bragg, and Russian physicist George V. Wulff.
The experiments clearly showed the periodic structure
of solids and the wave nature of X rays. In this review,
we have demonstrated that new experimental possibil-
ities appearing at extremely low temperatures make it
possible to observe new, very extraordinary, manifes-
tations of Bragg diffraction caused by the wave behav-
ior of atomic scatterers themselves.

The interaction of light with the Bose–Einstein
condensate results in the formation of polariton exci-
tation propagating along the sample and is consis-
tently described by quantum scattering equations,
where the atomic system is characterized by the wave-
function (order parameter) of the condensate.
Although scattering can generally be interpreted
within Maxwell’s macroscopic theory, the dielectric
properties of the medium associated with quantum
degeneracy and spatial modulation of the order
parameter are unique and do not have any classical
analog. In particular, a channel of strong coherent
scattering of interfering fragments of the BEC appears
even at a low density of the sample at large detunings
in wings of atomic resonance in the spectral ranges
where a normal gas with the same density would be
transparent.

The coherent scattering mechanism discussed in
this review can be interesting, e.g., for the develop-
ment of effective quantum interface systems to mini-
mize the number of atoms involved in the exchange of
microscopic quantum states between light and matter.
In current systems of optical cooling of atoms, it seems
quite possible to localize a few atomic clusters in a
compact trap by means of the optical tweezer method.
As a result, a natural configuration appears where the
scattering of light can be significantly enhanced by
quantum density oscillations formed by the interfer-
ence of material waves of localized atoms.
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