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Resonant Raman scattering in quantum rings with a sufficiently large number of conduction electrons has
been studied. The cross section for Raman scattering accompanied by the excitation of a one-dimensional
plasmon in a ring has been determined in the self-consistent field approximation.
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Inelastic light scattering from low-dimensional
systems is widely used to study collective electronic
excitations. In [1–3], this method was used to study
dispersion laws of two-dimensional plasmons in
quantum wells and multilayer superlattices. Disper-
sion laws for an ensemble of quantum wires were stud-
ied in [4–7]. A plasmon in the mentioned systems is
characterized by two-dimensional or one-dimen-
sional momentum and has a continuous spectrum. A
specific situation arises for quantum rings, where the
orbital quantum number  serves as the lon-
gitudinal momentum in a wire, the plasmon spectrum
becomes discrete, and the application of a magnetic
field results in Aharonov–Bohm-type effects.

This work is devoted to the theoretical study of
Raman scattering by magnetoplasmons in quantum
rings. We analyze resonant inelastic light scattering in
a quantum ring with numerous conduction electrons.

The differential scattering cross section (per quan-
tum ring) can be represented in the form [8–10]

(1)

where the function G is given by the expression

(2)

Here,  is the Bose function; 
and  are the frequencies of incident and scattered light,
respectively;   is

the effective “density” operator;  and  are the
creation and annihilation operators of an electron in

the single-particle state  in the conduction band
(β is the set of orbital quantum numbers and  is
the spin index), respectively;  is the scattering
matrix element; and  is taken hereinafter. It is
assumed that the total Hamiltonian of the system
includes the Coulomb interaction between electrons in
the conduction band. Below, we consider the case of
resonant scattering involving the spin-split branch of
the valence band. In this case,  has the form [11]

(3)

where Eg is the effective width of the band gap,  ( )
is the projection of the wave vector of incident (scat-
tered) light on the plane of the quantum ring,  ( ) is
the polarization vector of incident (scattered) light,

, σ is the vector of the Pauli matrices, P is
the Kane parameter, and  and  are the single-par-
ticle energies of the electron in the conduction and
valence bands, respectively, independent of the spins
(spin–orbit interaction in the conduction band and
Zeeman splitting are neglected). The function 
is given by the formula

(4)

Here,  and  are the single-particle envelops
of the electron wavefunctions in the conduction and
valence bands, respectively. Below, we consider the
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case of polarization light scattering in the 
geometry. In this case, .

To take into account the Coulomb interaction in
the self-consistent field approximation following [8],
we represent the function G given by Eq. (2) in the
form

(5)

where  satisfies the equation

(6)

Here,

(7)

where  is the Fermi dis-
tribution function, ζ is the chemical potential, and T is
the temperature, and

(8)

is the matrix element of the Coulomb potential, where
κ is the background dielectric constant.

The single-particle wavefunction and energy of the
electron in the one-dimensional ring in the transverse
magnetic field have the form (  are the polar
coordinates in the ring plane)

(9)

Here,  is the size-quantized function limiting the
radial motion of the electron ( , R is
the ring radius), ,  is the effective
mass of the electron, Φ is the magnetic f lux in units of
the f lux quantum , and  is
the angular momentum of the electron. The single-
particle wavefunction and energy of the electron in the
valence band have the form

(10)

Here,  where mh is the effective mass of
the hole.

The substitution of Eq. (4) into Eq. (3) gives

(11)
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where  is the Bessel function,  are the polar
angles of the vectors , and θ is the angle between 
and .

Equation (6) acquires the form

(12)

where the Fourier transform  of the Coulomb
potential (taking into account the periodicity of the
potential in the angular variable) is given by the
expression

(13)

Here, d is the cutoff parameter of about the width or
thickness of the ring.

The solution of Eq. (12) for  has the form

(14)

According to Eqs. (1), (5), and (14), the scattering
cross section is given by the expression

where

(15)

Here,

(16)

The denominator in the first term of Eq. (15) is the
effective longitudinal permittivity . The zeros of
this function of ω, i.e., the roots of the equation

, constitute the spectrum of the plas-
mons in the ring . In contrast to the ordinary one-
dimensional system, the plasmon in the one-dimen-
sional ring is characterized by the angular momentum

 rather than by the wave vector. The quan-
tity  is the contribution to the cross section from
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scattering involving a plasmon with the angular
momentum l.

Below, we consider only the backscattering geome-
try. In this case, , . The further calcula-
tions involve the following explicit expression for :

(17)

(18)

Here, λ and δ are the phenomenological damping
parameters, ,  is the resonance
detuning, and ω is the Raman frequency shift. The
expression for  is obtained from Eq. (17) by chang-
ing .

In the situation with a fixed number of electrons, the
chemical potential ζ is a function of the magnetic flux
Φ, which is different for different numbers of electrons
in the ring. There are the four specific cases where the
number of electrons is 
( j is a nonnegative integer). The relation of the num-
ber of electrons to the chemical potential has the form

(19)

According to Eq. (19),  is a periodic (with a
period of 1) even function of Φ. The solution of
Eq. (19) in the limit of low temperature in the Φ inter-
val of (–1/2, 1/2) gives

(20)

where  is the integer part of the number x.
The indicated four N values are specific because

the states of the electron in the ring at  and in the
absence of the Zeeman contribution to the energy are
doubly degenerate (in spin) at  and are quadru-
ply degenerate (in spin and sign of m) at . At

, the situation of the “completely filled
shell” occurs, so that the Fermi level at T = 0, 
lies in the gap between the  and  lev-
els (for positive Φ). Such a situation corresponds to a
dielectric spectrum. The same situation appears at

, but the Fermi level in this case lies between
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the  and  levels in the gap narrow at a low
flux. A “metallic” spectrum arises at odd N values,
when the Fermi level at  coincides with a certain
degenerate but incompletely filled level. These depen-
dences on the number of electrons in the system are
manifested in the magnetic f lux dependence of the
Raman scattering cross section. We numerically cal-
culated the cross section for N = 58, 59, 60, and 61. It
can be shown that the quantities  are also periodic
functions of  with a period of 1 and satisfy the rela-
tion

(21)

The quantities  have the same properties. It is note-
worthy that the sum of partial cross sections  is
obviously an even function of Φ.

The inelastic scattering cross section was calculated
as a function of Φ in the interval of (–1/2, 1/2). We
considered the contribution to the cross section from
the excitation of the plasmon with the angular
momentum . At typical values of the frequency of
the incident light (for GaAs  eV) and ring
radius (  cm), the argument of the Bessel
functions in Eq. (17) is small ( ). These func-
tions decrease rapidly with an increase in n and .
For this reason, only terms with n = 0 and 1 in the sum
over n are taken into account when calculating the
cross section. Furthermore, Eq. (17) has a resonance
denominator. The resonance situation arises when

, which occurs at certain n, m, and Φ val-
ues. The main contribution to the sum over m in
Eq. (17) comes from m values for which the difference

 is noticeably nonzero. For the
chosen N values, , ±15, and –16 contribute to
the cross section.

We calculated the magnetic f lux dependence of the
quantity  at the frequency shift correspond-
ing to the plasmon peak; i.e., ω was changed to .
The calculations were performed with a particular
detuning Δ = 292.5Be. This Δ value is resonant at

,  and ,  for ; at ,
 for ; and at ,  for

. These terms are leading in sums in Eq. (17)
and it is sufficient to retain only these terms to calcu-
late the cross section.

Figure 1 shows the dependences of the plasmon
frequency with  on the magnetic f lux. Plasmons
with  are intersubband and correspond to single-
particle virtual  transitions of conduction
electrons. The plasmon with  does not exist in the
ring, which means that the frequency of the one-
dimensional plasmon in a quantum wire vanishes at
zero momentum. The N = 58 case is a separate case of
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Fig. 1. Magnetic-flux dependence of the plasmon fre-
quency with  (in units of ) at the parameters

; ; , where  is the effective Bohr
radius of the electron; ; and N = (a) 58, (b) 59, (c)
60, and (d) 61.

p

= 1l eB
= 10 eR a = .0 5 eT B = ed a ea

δ = eB

Fig. 2. Magnetic-flux dependence of the plasmon peak
amplitude in the scattering cross section (in units of

) at the parameters , ; the
other parameters are the same as in Fig. 1; N = (a) 58,
(b) 59, (c) 60, and (d) 61.
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the “filled shell,” when the Fermi level at  lies in
the gap with a width of , where  is the
number of the last filled level;  at . The
dependences  in the remaining three cases (two
odd N values and one of the 4j type) are similar to each
other because the “dielectric” gap for N = 60 also van-
ishes at ; i.e., the situation becomes “metallic.”
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The same specificity of the N = 58 case, as well as sim-
ilarity (except for fine details) of the remaining three N
values, is also seen in Fig. 2, where the dependences of
the amplitudes of the plasmon peak in the scattering
cross section on the magnetic f lux are shown.

To summarize, it has been shown that collective
oscillations of electrons in a quantum ring are mani-
fested in the spectra of resonant inelastic light scatter-
ing. Raman frequency shifts correspond to intersub-
band plasmons, which are characterized by the dis-
crete quantum number . The scattering
cross section in a magnetic field demonstrates an
Aharonov–Bohm-type effect, being a periodic func-
tion of the magnetic f lux through the ring with the
period . This cross section as a function of 
changes significantly at a change in the number of
electrons in the ring by unity (even at ) because
of the degeneracy multiplicity of the single-electron
spectrum at  (2 for  and 4 for ).
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