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The density functional theory is used to calculate the energy of an electron–hole liquid in Si/Si1 – xGex/Si
quantum wells. Three one-dimensional nonlinear Schrödinger equations for electrons and light and heavy
holes are solved numerically. It is shown that, in shallow quantum wells (small x), both light and heavy holes
exist in the electron–hole liquid. Upon an increase in the Ge content, a transition to a state with one type of
holes occurs, with the equilibrium density of electron–hole pairs decreasing by more than a factor of 2.
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INTRODUCTION

Low-dimensional systems, in particular, two-
dimensional layers in semiconductors, exhibit new
properties as compared to three-dimensional samples
of the same compounds, because spatial confinement
leads to the enhancement of particle–particle interac-
tion effects. One of such systems is a quasi-two-
dimensional electron–hole liquid (EHL). The possi-
bility of the formation of a quasi-two-dimensional
EHL was shown for the first time in [1, 2]. Recently,
the EHL was discovered in SiO2/Si/SiO2 quantum
wells [3, 4] and in Si/Si1 – xGex/Si heterostructures
[5–11].

Si/SiGe/Si quantum wells are type-II structures in
which the SiGe layer forms a barrier for electrons and
a quantum well for holes. Experimental results indi-
cate that the properties of the EHL are modified upon
the variation of the Ge content in the SiGe layer. In
particular, an unusual structure in the EHL emission
spectrum of SiGe/Si quantum wells with a low Ge
content (a few percent) was found experimentally in
[10, 11]. The shape of the condensed-phase line was
explained by invoking the idea of a multicomponent
EHL containing both heavy and light holes. It is note-
worthy that the observed fine structure in the EHL
emission spectra disappears as the Ge content in the
quantum well increases.

The aim of this work is to calculate the energy of
the quasi-two-dimensional EHL in SiGe/Si quantum
wells in the presence of two types of holes. The calcu-
lations are carried out using the density functional
theory.

MODEL
Let us consider a quasi-two-dimensional EHL with

electrons and light and heavy holes. The total energy of
such an electron–hole system can be written as

(1)

Here, , , and  are the kinetic energies of elec-
trons and heavy and light holes, respectively;  is
the Coulomb potential;  is the exchange–correla-
tion energy; , , and  are the external
potentials for electrons and heavy and light holes,
respectively; , , and  are the densities of elec-
trons and heavy and light holes, respectively; and

.
Excitonic units are used, so that the length and

energy are measured in units of  and
, respectively, where μ is the reduced

mass and k is the dielectric constant. The values
 and  corresponding to bulk silicon

are taken, which yields  nm and  meV.
The Kohn–Sham equations for quasi-two-dimen-

sional electrons and heavy and light holes can be writ-
ten as [12, 13]
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where , , and .

Thus, the problem is reduced to the solution of three
one-dimensional nonlinear Schrödinger equations with
the potentials  = ,

 = , and  =
, where  is the

exchange–correlation potential and  is the elec-
trostatic potential obtained from the Poisson equa-
tion:

(3)

The external potentials for electrons and holes are
given by the formula

(4)

where d is the width of the well (barrier).

The quantity  is introduced to take into account
splitting between light and heavy holes. Let

; then, the energy is measured from the
band gap of the semiconductor that forms the quan-
tum well (barrier). Below, a type-II heterostructure,
where , , and , is considered.

When only the lower quantum-confinement level
is occupied, the carrier densities are given by expres-
sions

(5)

where , , and  are the two-dimensional den-
sities of electrons and heavy and light holes, respec-
tively. The subscript 0 will be omitted below.

The kinetic energy is written as

(6)

Here, the first and second terms correspond to the
kinetic energy of charge-carrier motion parallel and
perpendicular to the electron–hole layer, respectively.

The approximation  is
used for the exchange–correlation energy [14]. Then,
in the local density approximation, the exchange–cor-
relation potentials are written as

(7)
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The following expression is used for the exchange–
correlation energy [15]:

(8)

where  ( ), ,
, , and .

An electrically neutral EHL, where Ne = Nhh +
Nhl = N, is considered here. The energy per electron–
hole pair will be measured from the lowest heavy-hole
energy level  in an empty well: Eeh = .

Taking into account that the Fermi energy of
charge carriers with the density-of-states effective
mass  and the number of equivalent
valleys of  equals , we have

(9)

From this equation, we find that, for the electrically
neutral EHL and ,

(10)

If Eq. (10) yields , we have to take 
and .

RESULTS

The calculations were carried out for Si/SixGe1 – x/Si
structures using the parameters [16–18] ,

, , , ,
, , , md,hl =

0.25m0 (here, m0 is the free-electron mass), ,
and .

The results of the numerical solution of the
Schrödinger equations are shown in Fig. 1. It is seen
that the wavefunctions of light holes and electrons
overlap to a larger extent than those of heavy holes and
electrons. Therefore, the presence of light holes in the
EHL reduces the energy owing to a decrease in the
Coulomb energy. The incomplete overlap of electron
and hole wavefunctions results in the formation of an
attractive Coulomb potential for electrons, which
exceeds the barrier for electrons. One can see from
Fig. 1 that the Coulomb and exchange–correlation
potentials at the center of the quantum well are about

 and , respectively. For holes within
the quantum well, the repulsive Coulomb potential is
compensated by the exchange–correlation potential.
In our model, the effective potentials for light and
heavy holes differ only within the quantum well by the
value of .
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Fig. 1. (Color online) Profiles of the potentials and wave-
functions for (1) electrons, (2) light holes, and (3) heavy
holes obtained with the parameters ,

, , and .

ex

ex

= .0 29N
= .0 082hlN = .0 034x = 2d

Fig. 2. (Color online) Energy per electron–hole pair ver-
sus the two-dimensional electron–hole pair density for

.

ex

= 2d

Fig. 3. (Color online) Electron and heavy and light-hole
densities versus the Ge content in the SiGe layer for .= 2d Fig. 4. (Color online) Equilibrium electron–hole pair

density versus the Ge content in the SiGe layer.
Figure 2 shows the energy per electron–hole pair
versus the two-dimensional pair density for a quantum
well with a width of  (10 nm). For , the
energy minimum is attained for , and the
EHL is three-component with a light-hole density of

. With increasing Ge content, the energy
curve acquires two minima. The EHL at the first min-
imum (at a smaller value of N) contains only heavy
holes, and the EHL at the second minimum contains
both light and heavy holes. For , the two
energy minima are almost equal. With a further
increase in x, there remains one energy minimum
(two-component EHL) and the equilibrium elec-
tron–hole pair density decreases. Apart from an
increase in the splitting of energy levels between light
and heavy holes, the transition to the two-component
state is also caused by an increase in the energy of light
holes in the external potential. We note that, for

, light holes are present almost in the entire
range of electron–hole pair densities (Fig. 2). For

 and 0.04, light holes with a low density
begin to appear near the first energy minimum, and at

= 2d = .0 03x
= .0 34N

= .0 12hlN

= .0 034x
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= .0 034x
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, the density of light holes becomes 
0.087 and 0.071 for x = 0.034 and 0.04, respectively.

The transition from a three-component to a two-
component EHL with increasing x occurs rather
abruptly. This is clearly demonstrated in Fig. 3. It is
noteworthy that, for small x, the densities of light and
heavy holes are close to each other. Upon the transi-
tion from a three-component to a two-component
EHL, the equilibrium density of electron–hole pairs is
more than halved.

Calculations were carried out for structures with
different widths of quantum wells. The results of these
calculations are shown in Fig. 4. One can see that, as
the width of quantum wells decreases, the transition to
the two-component EHL occurs at a larger Ge con-
tent. This dependence on the well width is caused by
the stronger effect of the external potential on the
splitting between the energy levels of heavy and light
holes in shallow narrow quantum wells.

Calculations taking into account the presence of
both light and heavy holes in the EHL yield good
agreement with the experimental data. Indeed, it was

= .0 3N =hlN
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shown in [10] that, for  nm and , there
exists the three-component EHL, which agrees rea-
sonably well with the calculation results. The experi-
mental value of the equilibrium electron–hole pair
density in the three-component EHL, which is N =

 cm–2 for  nm [10], agrees well with the
calculated values (Fig. 4). According to [6], the quasi-
two-dimensional EHL that appears in a structure with

 nm and , is, apparently, two-compo-
nent. The calculations for such a structure yield N =

 cm–2 (Fig. 4), which is in good agreement with
the experiment [6].

CONCLUSIONS
The energy of the EHL in Si/SiGe/Si heterostruc-

tures with different widths of quantum wells (barriers)
and Ge contents has been calculated. It has been
shown that a three-component EHL is formed in shal-
low quantum wells (low Ge content). With increasing
Ge content, the transition to a two-component EHL
takes place, and the equilibrium density of electron–
hole pairs decreases significantly. The results of the
calculations agree with the experimental data.

This study was supported by the Russian Founda-
tion for Basic Research and the Krasnodar regional
administration (project no. 16-42-230280).
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