
ISSN 0021-3640, JETP Letters, 2018, Vol. 108, No. 1, pp. 44–47. © Pleiades Publishing, Inc., 2018.
Original Russian Text © V.A. Mutailamov, A.K. Murtazaev, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 1, pp. 42–45.

CONDENSED
MATTER
Short-Time Dynamics of the Three-Dimensional Ising Model
with Competing Interactions

V. A. Mutailamova, * and A. K. Murtazaeva, b
a Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, 367003 Russia

b Dagestan State University, Makhachkala, 367025 Russia
*e-mail: vadim.mut@mail.ru

Received May 18, 2018; in final form, May 28, 2018

The critical relaxation from the low-temperature ordered state of the three-dimensional Ising model with
competing interactions on a simple cubic lattice has been studied for the first time using the short-time
dynamics method. Competition between exchange interactions is due to the ferromagnetic interaction
between the nearest neighbors and the antiferromagnetic interaction between the next nearest neighbors. Par-
ticles containing 262144 spins with periodic boundary conditions have been studied. Calculations have been
performed by the standard Metropolis Monte Carlo algorithm. The static critical exponents of the magneti-
zation and correlation radius have been calculated. The dynamic critical exponent of the model under study
has been calculated for the first time.
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Competing interactions in magnetic materials lead
to the appearance of a large variety of magnetic
ordered states and phase transitions between them. In
this connection, a three-dimensional Ising model
including the spin exchange interaction not only
between the nearest neighbors but also between the
next nearest neighbors is of certain interest. The Ham-
iltonian of such a model can be represented in the form

(1)

where  is the Ising spin at the lattice site i, the first
sum describes the ferromagnetic exchange interaction
between the nearest neighbors , and the sec-
ond sum describes the antiferromagnetic exchange
interaction between the next nearest neighbors

. The type of magnetic ordering at low tem-
peratures depends on the frustration parameter

. This model was studied both theoretically
using the effective field theory [1] and by computa-
tional physics methods (the Wang–Landau method
and the classical Metropolis algorithm) [2]. The
authors of these studies showed that the low-tempera-
ture ferromagnetic ordering takes place at

, and collinear ordering, which is also
called superantiferromagnetic (alternating ferromag-
netic layers with oppositely directed spins), occurs at

. At high temperatures, the model is in
the paramagnetic state for all frustration parameter
values. The interface between the ferromagnetic and
paramagnetic phases is a line of second-order phase

transitions, whereas the interface between the collin-
ear and paramagnetic phases is a line of first-order
phase transitions [1, 2].

Using the short-time dynamics method, we studied
the critical relaxation of the three-dimensional Ising
model with competing interactions from the low-tem-
perature ordered state in the interval of the frustration
parameters of . Recently, this
method has been successfully applied to study the crit-
ical dynamics of models of magnetic materials [3–8],
in which the critical relaxation of the magnetic model
from the nonequilibrium state to the equilibrium one
is studied within the model A (the Halperin–Hohen-
berg classification of universality classes of the
dynamic critical behavior [9]).

When relaxation starts from the completely ordered
low-temperature state, the kth moment of the magne-
tization after a microscopically small time interval has
the scaling form [3, 10]

(2)

Here,  is the kth moment of the magnetization; t
is the time;  is the reduced tempera-
ture; b is the scaling factor; β and ν are the static criti-
cal exponents of the magnetization and correlation
radius, respectively; z is the dynamic critical exponent;
and L is the linear dimension of the system. Assuming

 [3], we obtain the following expression for
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Table 1. Temperature values for which the calculations were
performed

α T1 T2 T3 T4 T5

0.001 4.490 4.495 4.500 4.505 4.510
0.05 3.895 3.900 3.905 3.910 3.915
0.10 3.276 3.281 3.286 3.291 3.296
0.15 2.630 2.635 2.640 2.645 2.650
0.20 1.945 1.950 1.955 1.960 1.965
0.24 1.329 1.334 1.339 1.344 1.349

Fig. 1. Time dependence of the magnetization at five tem-
perature values for the frustration parameter .
The temperature values are given in Table 1.

α = .0 15
the magnetization of systems with large linear dimen-
sions L:

(3)
At the phase transition point ( ), the magneti-

zation depends only on time according to the power
law

(4)

By taking the logarithmic derivatives of both sides
of Eq. (3) with respect to τ at , we obtain a power
law for the logarithmic derivative at the phase transi-
tion point

(5)

For the Binder cumulant  calculated from the
first and second moments of the magnetization, the
finite-size scaling theory gives the following depen-
dence at :

(6)

where d is the dimensionality of the system.
Thus, the short-time dynamics method allows

determining three critical exponents β, ν, and z in a
single numerical experiment using Eqs. (4)–(6). In
addition, the dependences (4) plotted for different
temperatures make it possible to determine the 
value from their deviation from a straight line on a
log–log scale. Another advantage of the method is the
absence of the critical slowing down because the spa-
tial correlation radius remains small in the short-time
segment even near the critical point [10].

We studied a cubic particle containing 
unit cells in each crystallographic direction with peri-
odic boundary conditions. We considered a system
with the linear size L = 64 containing N = L3 =
262144 spins. This L value is chosen as the minimally
necessary one in order to exclude the effect of the
finite sizes on the result [3].

The calculations were carried out by the standard
Metropolis Monte Carlo algorithm. The relaxation of
the system occurred from the completely ordered low-
temperature initial state with the starting magnetiza-
tion  during the time , where one
Monte Carlo step per spin was taken as the “time”
unit. The relaxation dependences were calculated

 times, and the resulting data were averaged.
The simulation was carried out for five tempera-

tures near the phase transition point for each α value.
These temperatures in units of the exchange integral

 are given in Table 1. The  value was chosen as
close as possible to the  value. Thus, the simulation
gave five time dependences of the magnetization (4)
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for each α value. Then, these dependences were inter-
polated for the entire temperature range from  to 
with the step  by the least squares method.
The analysis of all curves (obtained by the direct cal-
culation and interpolation) allowed us to determine
the critical temperature with a high accuracy, since
dependence (4) should be a straight line on a log–log
scale at the phase transition point. The deviation from
the straight line was determined by the least squares
method. The temperature at which this deviation was
minimal was taken as the critical value. Figure 1 shows
a typical time dependence of the magnetization at dif-
ferent temperatures for the frustration parameter

 (hereinafter, all values are given in arbitrary
units).

Similarly, the time dependence of the Binder
cumulant (6) was calculated by interpolation for the
found  value. The logarithmic derivative at the phase
transition point was calculated by the least squares
approximation over the five time dependences of the
magnetization plotted for the temperatures indicated
in Table 1.

The time dependences of the magnetization, its
logarithmic derivative, and the Binder cumulant

1T 5T
−Δ = 410T

α = .0 15

cT
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Fig. 2. Time dependence of the magnetization at the phase
transition point for the frustration parameters α = (d)
0.001, (s) 0.05, (j) 0.10, (h) 0.15, (m) 0.20, and (n) 0.24.

Fig. 3. Time dependence of the logarithmic derivative of
the magnetization at the phase transition point for the
frustration parameters α = (d) 0.001, (s) 0.05, (j) 0.10,
(h) 0.15, (m) 0.20, and (n) 0.24.

Fig. 4. Time dependence of the Binder cumulant at the
phase transition point for the frustration parameters α =
(d) 0.001, (s) 0.05, (j) 0.10, (h) 0.15, (m) 0.20, and
(n) 0.24.

Fig. 5. Phase diagram of the Ising model with competing
interactions including the (F) ferromagnetic and (P) para-
magnetic phases according to (dashed line) [1], (s) [2],
and (d) this work.
obtained at the critical point for different frustration
parameters  are presented on a log–log scale in
Figs. 2–4, respectively. We note that the numerical
experiment was performed with the time step ,
but for clarity, the results in Figs. 2–4 are given with
the time step .

The analysis of the final dependences (4)–(6)
showed that the power-law scaling behavior of the
studied system begins with a time of about . For
this reason, the approximation of all curves was per-
formed in the time interval t = [100, 1000]. As a result
of the approximation, the critical exponents , , and

 were obtained for each α value, which, in turn,
made it possible to calculate the critical exponents β,
ν, and z. The critical exponents β, ν, and z found in

α

Δ = 1t

Δ = 50t

= 100t

1c 1lc
uc
this way, as well as the critical temperatures , are
given in Table 2.

It can be seen in Table 2 that the critical exponents
are almost independent of the frustration parameter α
in the range of . The exponents β and
ν are close to the values for the classical three-dimen-
sional Ising model [11], and the exponent z is close to
that predicted theoretically for anisotropic magnets
( , model A [6]). Further, the picture changes: the
deviation of the critical exponents from the values
characteristic of the range  increases
with the frustration parameter α. Correspondingly,
the exponents β, ν, and z near the frustration point no
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Table 2. Critical exponents and critical temperatures

α Tc c1 cl1 cu β ν z

0.001 4.4990 (3) 0.244 (3) 0.779 (3) 1.43 (2) 0.313 (4) 0.61 (2) 2.10 (2)
0.05 3.9063 (3) 0.241 (3) 0.782 (3) 1.47 (2) 0.308 (4) 0.63 (2) 2.05 (2)
0.10 3.2849 (3) 0.238 (3) 0.777 (3) 1.41 (2) 0.306 (4) 0.60 (2) 2.13 (2)
0.15 2.6400 (3) 0.234 (3) 0.779 (3) 1.43 (2) 0.300 (4) 0.61 (2) 2.11 (2)
0.20 1.9548 (3) 0.219 (3) 0.771 (3) 1.37 (2) 0.284 (4) 0.59 (2) 2.20 (2)
0.24 1.3395 (3) 0.127 (3) 0.750 (3) 1.13 (2) 0.170 (4) 0.50 (2) 2.66 (2)
longer correspond to the classical three-dimensional
Ising model.

In our opinion, this kind of critical behavior occurs
because local f luctuations in the system near the frus-
tration point  increase with the competing
interactions and begin to significantly affect the criti-
cal behavior of the model under study. This result
somewhat contradicts the conclusions made in [2]
that the static critical exponents along the entire line of
second-order phase transitions between the ferromag-
netic and paramagnetic phases correspond to the uni-
versality class of the three-dimensional classical Ising
model.

Figure 5 shows the phase diagram of the Ising
model with competing interactions in the range of

. It can be seen that the values
obtained in this work agree qualitatively well with the
theoretical results obtained using the effective field
theory [1] and quantitatively coincide with the results
obtained by computational physics methods [2].

The results of our work demonstrate good agree-
ment with the results of other authors, which indicates
the efficiency of the application of the short-time
dynamics method to the study of the critical properties
of models with competing interactions. At the same
time, the effect of frustrations on the character of the
critical behavior along the line of phase transitions
remains questionable, especially near the frustration

point. Note that the dynamic critical exponents for
this model are calculated for the first time.
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