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The critical behavior of the disordered two-dimensional antiferromagnetic Potts model with the number of
spin states  on a triangular lattice with disorder in the form of nonmagnetic impurities is studied by the
Monte Carlo method. The critical exponents for the susceptibility γ, magnetization β, specific heat α, and
correlation radius  are calculated in the framework of the finite-size scaling theory at spin concentrations
p = 0.90, 0.80, 0.70, and 0.65. It is found that the critical exponents increase with the degree of disorder,

whereas the ratios  and  do not change, thus holding the scaling equality . Such behavior

of the critical exponents is related to the weak universality of the critical behavior characteristic of disordered
systems. All results are obtained using independent Monte Carlo algorithms, such as the Metropolis and
Wolff algorithms.
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1. INTRODUCTION

Phase transitions and critical phenomena in sys-
tems with disorder in the form of quenched nonmag-
netic impurities, random bonds, and random fields are
addressed in a huge number of papers (see [1–3]). The
Harris criterion [4] clarifies the principally important
problem concerning a change in the critical behavior
because of the introduction of a small number of
immobile (“quenched”) impurities. According to this
criterion, in the case of , where d is the dimen-
sionality of the system and  is the critical exponent of
the correlation radius, impurities do not affect the
critical exponents. The Harris criterion is inapplicable
to the two-dimensional Ising model, where .
The detailed analysis of this case [5] indicates that
impurities affect only the behavior of the specific heat,
whereas the other thermodynamic and correlation
functions retain their critical behavior.

At the same time, there are some indications that
impurities produce a quite different effect up to the
change in the order of a phase transition in the case of
spin systems undergoing a first order phase transition
in the absence of impurities [6, 7]. Such a change in
the phase transition is indeed observed experimentally
in liquid crystals in the presence of aerogel [8]. For
low-dimensional systems ( ) described by the

Potts model with  (  is the critical number of
spin states and d is the dimensionality), as small as
possible disorder is sufficient for changing the phase
transition from first order to second order [7, 9]. For
homogeneous systems with , described by the
Potts models exhibiting the first order phase transi-
tion, the situation can be quite different. In such case,
the introduced quenched disorder can give rise to a
tricritical point p* below which a second order phase
transition occurs and above it the phase transition is of
the first order [10–12].

However, it is still unclear whether the critical
exponents of disordered low-dimensional systems
which exhibit the first order phase transition in the
homogeneous state are universal, i.e., whether they
are independent of the concentration of impurities up
to the percolation threshold or they vary continuously
with the increase in the concentration of impurities.
The main task of our work is to solve this problem.

The results of different experimental and theoreti-
cal studies in the case of finite concentrations of mag-
netic impurities at different lattices are not so unam-
biguous. The results of [13, 14] confirm the indepen-
dence of the critical exponents for the magnetization
and susceptibility in the two-dimensional Ising model
of the degree of disorder. At the same time, Kim [15]
argues that the critical exponents for the two-dimen-
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Fig. 1. (а) Frustrations in the Ising model. (b) Antiferro-
magnetic Potts model containing impurities with the num-
ber of spin states  on the triangular lattice.

(a) (b)

= 3q
sional ferromagnetic Potts model with  depend
on the concentration of random bonds. Moreover, it
was found in [16] that the quenched disorder intro-
duced to the spin system within the two-dimensional
Ising model does not affect the universality in the crit-
ical behavior of the critical amplitudes up to the perco-
lation threshold.

In contrast to [13–16], we study here the critical
behavior of the disordered two-dimensional antiferro-
magnetic Potts model with  on a triangular lattice
with disorder conventionally introduced in the form of
quenched nonmagnetic impurities. This model is of
interest since the numerous studies for various lattices
reveal a nontrivial feature. Namely, the triangular lat-
tice turns out to be the only lattice exhibiting a phase
transition at the antiferromagnetic coupling between
the nearest neighbors. Moreover, the model under
study describes many physical characteristics of multi-
component alloys, adsorbed films, and liquid crystals
in a porous aerogel material [17].

2. MODEL AND THE METHOD OF ITS STUDY
The classical Ising model involves N discrete

objects referred to as lattice sites; each of them can
correspond to one of two states (Fig. 1a). Generaliza-
tions of the Ising model to the cases where the number
of possible directions of spin is larger than two ( )
are the Potts models. Therefore, while formulating the
two-dimensional diluted antiferromagnetic Potts
model with the number of spin states , we should
have in mind its following specific features.

(i) The sites of the triangular lattice should contain
either spins , which can correspond to one of 
states, or nonmagnetic impurities (vacancies, see
Fig. 1b). The nonmagnetic impurities are randomly
distributed over the lattice sites and are fixed at them
(quenched disorder).

(ii) The energy of the pair interaction has one value
if the interacting sites correspond to the same states
(independent of the specific type of the state) and
another value if the sites correspond to different states
(again independent of the specific type of the states).
The binding energy for two states is zero if one of the
interacting sites contains a nonmagnetic impurity.

The microscopic Hamiltonian of such system
involving the aforementioned features can be repre-
sented in the form [18]

(1)

Here, J is the parameter characterizing the antiferro-
magnetic exchange interaction between the nearest-
neighbor spins ;  if the ith site is occupied
by a magnetic atom and  if the ith site contains a
nonmagnetic impurity;  is the angle
between the interacting spins Si and Sj and can acquire
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three values 0°, 120°, and 240° at , 1, and 2,
respectively; and the spin  can correspond to one of

 states , 2, and 3.
In the absence of the structural disorder, it is

known that such model exhibits a weak first order
phase transition [19], as is predicted by the mean-field
theory [18]. A weak disorder introduced to this model
can induce a second order phase transition, as was rig-
orously proven in [7]. This result was confirmed by
numerous studies [20–23], as well as by the experi-
ments on the superfluid transition of 4He in a porous
aerogel material [8, 24]. Moreover, for homogeneous
systems with  exhibiting the first order phase
transition, the introduced disorder gives rise to the
tricritical point p* [10–12, 25, 26].

The analysis of the critical behavior of low-dimen-
sional disordered systems by conventional theoretical
and experimental methods is a very complicated task
because it is hardly possible to prepare high-quality
samples with accurately specified and uniformly dis-
tributed concentrations of impurities. Moreover, most
of the standard theoretical approaches are inapplica-
ble to disordered systems [1, 2]. Therefore, such low-
dimensional systems described by microscopic Ham-
iltonians can be rigorously and consistently studied by
the Monte Carlo (MC) methods. The MC methods
provide an opportunity to study the critical parameters
of spin systems of any degree of complexity at any con-
trolled values of the concentration of impurities. In
this work, we use the cluster Wolff algorithm [27]
combined with the classical Metropolis algorithm [28]
of the MC method. These algorithms are described in
more detail in [29, 30]. The results obtained are tested
by these independent algorithms and a good conver-
gence of the algorithms was achieved. The combina-
tion of these algorithms leads to an appreciable saving
of the computation time.

The calculations are performed for the systems
with periodic boundary conditions. We study the sys-
tems with linear sizes , L = 20−120. The
initial configurations are specified in such a way that
all nearest neighbors of the spin under study are in dif-
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Fig. 2. (a) Order parameter , (b) susceptibility χ, (c) specific heat C, and (d) parameter  for the two-dimensional strongly
diluted three-vertex antiferromagnetic Potts model versus the linear size  of the system at  and .

LL

V

cc

cc

AFm nV
L = .0 65p = cT T
ferent states. The frustration observed in the antiferro-
magnetic Ising model ( ) (see Fig. 1a) is absent
for the Potts model with  (see Fig. 1b). To drive
the system to the equilibrium state, we reject the non-
equilibrium segment with the length  from the sys-
tem with the linear size L. Then, we perform the aver-
aging over the part of a Markovian chain with the
length τ = 200τ0. For the largest system,  and

 MC steps per spin. In addition, we per-
form averaging over different initial disordered spin
configurations. For the spin systems with the concen-
tration of spins , we perform the averag-
ing over 1000–25000 configurations with different
realizations of disorder. These data are used to calcu-
late the average values of thermodynamic parameters.

3. RESULTS OF SIMULATIONS

The effect of quenched magnetic disorder on the
phase transitions in the two-dimensional antiferro-
magnetic Potts model on the triangular lattice was
studied in [22, 23, 31, 32]. It was demonstrated that
the first order phase transition changes to the second
order phase transition at the concentrations of impuri-
ties , . Moreover, the method of the
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fourth order Binder cumulants [33] and the histogram
analysis of the data [34] allowed determining the crit-
ical temperatures for the weakly diluted regime (at spin
concentrations p = 0.90 and 0.80) and for the strongly
diluted regime (at spin concentrations p = 0.70 and
0.65). The critical temperatures  of the diluted
systems determined by such a method in units of 
are , , 

, and .
In this work, we calculate the static critical expo-

nents of the order parameter β, susceptibility γ, spe-
cific heat α, and correlation radius  in the framework
of the finite-size scaling (FSS) theory [35], using the
critical temperatures obtained in [22, 23, 31, 32]
within a fairly broad range of the studied concentra-
tion of impurities, . The relations fol-
lowing from this theory suggest that, for a rather large
system with the periodic boundary conditions at

, the order parameter , susceptibility χ, and
parameter  determining the critical exponent ν
behave as [36]
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Fig. 3. Effective critical exponents of the (a) order parameter  and (b) susceptibility , as well as (c)  and (d)  ratios
versus the concentration of spins p.
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The parameter  can have the form
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where  and T is the temperature.
As a rule, to fit the temperature dependence of the

specific heat as a function of L, other expressions are
used, e.g., [37]
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where A is some factor.

To calculate the critical exponents β, γ, α, and ν,
we plot , χ, C, and  versus L. In Figs. 2a–2d, we
show log–log plots of the order parameter , sus-
ceptibility χ, specific heat C, and parameter  deter-
mining the critical exponent of the correlation radius
versus the linear lattice size L for the two-dimensional
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antiferromagnetic strongly diluted Potts model on the
triangular lattice at  and . The calcula-
tion error is indicated in Fig. 3. Note that the data
obtained for all studied thermodynamic parameters
deviate only slightly from a straight line at small values
of L. It is evident that the number of initial configura-
tions used and the sizes  of the system under
study allow us to achieve the asymptotic critical
regime. It is very important that the exponent is cal-
culated directly from the results of our numerical sim-
ulation, whereas in many other works, it was usually
determined from different scaling relations. The ratios
of critical exponents , , , and  and these
exponents themselves for different p values obtained at
the corresponding  value are listed in Table 1. Fig-
ure 3 shows the corresponding plots of effective critical
exponents (a)  and (b) , as well as the ratios of
critical exponents (c)  and (d) , versus the spin
concentration p. This figure demonstrates that the
effective critical exponents (a)  and (b) appre-
ciably vary when the concentration of magnetic sites
changes from p = 0.90 to 0.65, whereas the ratios of
critical exponents  and  remain constant within
the statistical error. The main result of this study is the
conclusion that the ratios of critical exponents 
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Table 1. Critical exponents for the two-dimensional disordered three-vertex antiferromagnetic Potts model on the triangu-
lar lattice determined using the theory of finite-size scaling

p β/ν γ/ν α/ν 1/ν ν β γ α 2β/ν + γ/ν = 2

0.90 0.133 1.733 0.351 1.136 0.880 0.117 1.430 0.310 1.999
0.80 0.132 1.735 0.402 1.203 0.831 0.111 1.451 0.333 1.999
0.70 0.130 1.732 0.381 1.189 0.841 0.109 1.462 0.319 1.992
0.65 0.137 1.730 0.222 1.096 0.912 0.124 1.571 0.202 2.004
and  are independent of the degree of dilution,

thus keeping the scaling equality . As is well

known from the current literature, this property of the
behavior of critical exponents is due to the “weak uni-
versality” characteristic of diluted systems [38].

4. CONCLUSIONS
To summarize, the critical behavior of the two-

dimensional disordered antiferromagnetic Potts
model with the number of spin states  on the tri-
angular lattice with disorder in the form of quenched
nonmagnetic impurities has been studied using a sin-
gle method. The numerical simulations have indicated
that the ratios  and  of the critical exponents
are independent of the concentration of nonmagnetic
impurities  within the range from 0.10 to 0.35, which
is due to weak universality in the disordered model
under study.

This work was supported by the Russian Founda-
tion for Basic Research, project no. 16-02-00214.
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