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A model of a planar defect with nonlinear properties, which separates media with a Kerr-type nonlinearity,
has been considered. It has been found that new steady states appear in a medium with self-focusing because
of the nonlinearity of the defect, which do not occur in the case of a linear defect. The energies of such states
have been obtained in an analytical form. The conditions for existence of such states have been determined
depending on the characteristics of the defect and medium.
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The study of nonlinear surface waves propagating
along the interfaces between media with different
physical characteristics is topical in view of their wide
application in optical data storage systems [1–3]. The
theoretical description of nonlinear waves in media
with defects widely involves the nonlinear Schrödinger
equation, which contains a cubic (with respect to the
desired field) term for a medium with the Kerr effect
[3]. In particular, localized states at the interface
between nonlinear and linear media were considered
within various models in [4–6] and the effect of the
spatial dispersion of the medium on localization near
the defect was analyzed in [7].

In this work, I propose a generalization of the
model of a thin defect layer with Kerr nonlinearity in
its bulk proposed in [8, 9]. The main aim of this work
is to determine the energies of steady states appearing
in the considered system exclusively because of the
nonlinearity of the defect.

Let us consider a simple model of the interface
between two crystal media. This interface is assumed
to be f lat and thin as compared to the localization
lengths of interface-induced perturbations of the char-
acteristics of the media. Let the plane of the defect
pass through the coordinate origin and lie in the 
plane perpendicular to the  axis.

Let us describe perturbations that are uniformly
distributed along the plane of the defect and are inho-
mogeneous in the normal direction within a one-
dimensional model described by the stationary non-
linear Schrödinger equation:

(1)

where E is the energy of a stationary state; m is the
effective mass of an excitation;  at  and

 at , where  are constants; and the
parameter of nonlinearity has the form  at

 and  at , where  are constant.
The parameter of nonlinearity  is negative for
media with self-focusing (attraction) and is positive
for media with defocusing (repulsion). In this work,
only media with self-focusing, which corresponds to

, are considered.
The nonlinear properties of a planar defect are

described by a one-dimensional potential in the form
[8, 9]

(2)

where  is the Dirac delta function,  is the linear-
approximation coupling constant of the excitation
with the defect located at the coordinate origin, and

 is the parameter of nonlinearity of the defect,
which is positive in the case of defocusing and negative
in the case of self-focusing in a thin defect layer.

It is noteworthy that the nonlinear equation with
the term given by Eq. (2) was used to formulate a
model of an optical system where the periodic modu-
lation of the linear refractive index is combined with a
single nonlinear defect [10, 11]. An example is the
considered physical model of a nonlinear optical
medium with the Kerr effect containing periodically
distributed defect layers whose refractive index
strongly differs from the refractive index of the optical
medium of other layers between them [12]. If the lay-
ers are perpendicular to the  axis, the electric field
vector E directed along the  axis satisfies Maxwell’s
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equation , where  is the
refractive index. The refractive index for a medium
exhibiting the Kerr effect can be represented in the
form , where  and  are the
linear refractive indices in the wide layer and narrow
layer of the waveguide, respectively; σ is the parameter
that is –1 and +1 in the “focusing” medium and
“defocusing” medium, respectively; and α is the non-
linearity coefficient of the medium.

Let us introduce the complex function
, where  and  are slowly varying

functions of z and t related to the electric field strength
by the expression 

, which describes a monochro-
matic wave with the wave vector  and fre-
quency . In terms of the dimensionless time
(t in units of ) and coordinate (  =
zk/ ; below,  = x), the function  at 
and  satisfies the standard nonlinear
Schrödinger equation ,
where , 

, , h is the width of the wave-
guides,  is the distance between them, and  is the
nonlinearity coefficient inside the waveguides. The
condition that the width of waveguides is much
smaller than the distance between them allows con-
sidering a point interaction described by a Dirac delta
function. In the case of weak coupling between plane-
parallel waveguides, the amplitude of the field in them
is much larger than the average field amplitude in the
entire crystal. For this reason, it was proposed to take
into account nonlinear terms inside the waveguides
[11].

A new physical model leading in the limiting case
to the nonlinear Schrödinger equation (ultraquantum
limit described by the Gross–Pitaevskii equation)
with both a finite-width potential well and a short-
range delta-function potential was recently proposed
in [13]. The potential well specified by Eq. (2) makes it
possible to take into account the properties of a trap for
small-amplitude exciton vibrational states that are due
to the nonlinear exciton–exciton interaction, to
obtain field distributions described by solutions by the
nonlinear Schrödinger equation in terms of elemen-
tary functions, and to analyze the conditions of their
existence and localization.

The solution of the nonlinear Schrödinger equa-
tion (1) with the potential (2) is equivalent to the solu-
tion of the contact boundary value problem for the
nonlinear Schrödinger equation with zero potential:

(3)
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with two matching boundary conditions at the point
:

(4)

(5)

The nonlinear boundary condition (5) is obtained
by integrating both sides of Eq. (1) with the potential
(2) with respect to  over the small interval  and
tending of  to zero [8]. In [9], the existence of local-
ized states in nonlinear media with focusing and defo-
cusing with a nonlinear defect was demonstrated and
their stability was analyzed. This work is devoted to
more general states described by periodic solutions of
the nonlinear Schrödinger equation.

For the self-focusing medium at ,
the nonlinear Schrödinger equation (3) has the spa-
tially periodic solution

(6)

where  and k is the modu-

lus of the elliptic function сn . Here and
below, j = 1 and 2 specify the characteristics of the
crystal to the left ( ) and right ( ) of the
defect plane, respectively.

According to the boundary conditions (4) and (5),

(7)

(8)

where , 
, and  is the complete elliptic integral

of the first kind.
The energy of the state for which  can

be determined in an explicit form. Then, the relation
 follows from Eq. (7), and Eq. (8) yields

(9)

Therefore, such a state is possible only at opposite
signs of the parameters of the defect. The energy is
obtained from Eq. (9) in the form

(10)

The modulus of the elliptic function is expressed in
terms of the parameters of the crystal and defect as

(11)

Expression (11) at  gives the following condi-
tion of localization of the state: 

. In this case, Eq. (6) gives the
localized state described by the function 

 vanishing at infinity,
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where  is the Heaviside step function and
.

States of such a form with the energy (10) are pos-
sible only when the planar defect separates crystals
with the nonlinearity characteristics different in mag-
nitude (but not in sign, ). Furthermore, the
existence of these states is exclusively due to the non-
linear properties of the defect because they do not
appear at .

The nonlinear Schrödinger equation (3) has
another spatially periodic solution

(12)

where dn is the elliptic function and 

.
The substitution of Eq. (12) into the boundary con-

ditions (4) and (5) yields the expressions

(13)

(14)

where .
The energy of the state for which  can

be determined in an explicit form. Then, the relation
 follows from Eq. (13), and Eq. (14) yields

the relation . Consequently, similar
to the states of the first type, such a state is possible
only at the opposite signs of the parameters of the
defect. From these expressions, the energy is obtained
in the form

(15)
and the modulus of the elliptic function is given by the
expression

(16)

The product of elliptic moduli specified by
Eqs. (11) and (16) is equal to unity. The same condi-
tion of localization of the state follows from Eq. (16).
Similar to the states of the first type, such states are
possible only when the planar defect separates crystals
with different nonlinearity characteristics and has
nonlinear properties ( ).
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To summarize, it has been found that the interface
with nonlinear properties between nonlinear self-
focusing crystals can generate two types of spatially
nonuniform periodic steady states describing exci-
tations of media, which exist exclusively because of the
nonlinear properties of the defect. These new states
appear in the case of the defocusing nonlinearity of the
defect ( ) and the attractive defect ( ) or in
the case of the self-focusing nonlinearity of the defect
( ) and the repulsive defect ( ). Moreover,
such states can exist only when the defect separates
self-focusing media with parameters of nonlinearity
differing in magnitude ( ).

It should be emphasized that the model proposed
in this work is a generalization of the model consid-
ered in [7, 8], within which new types of steady states,
which cannot exist in a nonlinear medium with a “lin-
ear” defect, have been obtained.
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