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The time reversal symmetric polar phase of the spin-triplet superfluid 3He has two types of Dirac nodal lines.
In addition to the Dirac loop in the spectrum of the fermionic Bogoliubov quasiparticles in the momentum
space , the spectrum of bosons (magnons) has Dirac loop in the 3D space of parameters—the
components of magnetic field . The bosonic Dirac system lives on the border between the type-I
and type-II.
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Originally the topology of the points and lines of
level crossing [1, 2] (diabolical points [3, 5]) has been
investigated in a parameter space. In particular, while
encircling a diabolical point in the space of two
parameters, the wavefunction changes sign [3–5].
Typically, this has been applied to electronic spectrum
in molecular systems. Later the topological methods
have been applied to the diabolical points in the spec-
trum of fermionic quasiparticles (Bogoliubov quasi-
particles) in gapless superfluids and superconductors
[6], where the parameter space is the space of linear
momentum in superfluids and quasimomentum in
superconductors, or the extended phase space 
[7–9]. In particular, the topologically protected dia-
bolical point in 3D momentum space—the Weyl
point—gives rise to Weyl fermions and effective gauge
and gravity fields emerging in the vicinity of the Weyl
point [10–12]. This analog of relativistic quantum
field allowed to experimentally verify the Adler–Bell–
Jackiw [13, 14] equation for chiral anomaly in chiral
superfluid 3He-A [15]. Then this topological consider-
ation has been extended to the spectrum of bosonic
excitations, see, e.g., [16–19].

Recently the new trend is towards the topology in
the extended space, which combines the momentum
space and the parameter space, see, e.g., [20]. Here, we
show that the appropriate system, where the two spaces
(momentum space and parameter space) are topologi-
cally connected, is the polar phase of superfluid 3He
discovered in nematically ordered aerogel [21].

In the momentum space, the polar phase contains
the Dirac nodal line in the quasiparticle spectrum

determined by the  Bogoliubov–Nambu Hamil-
tonian:

(1)

Here,  are the Pauli matrices in the Bogoliubov–
Nambu space;  and  are the Fermi momentum
and Fermi velocity in the normal state of liquid 3He;

 is the gap amplitude in the polar phase; ; 
is the unit vector of uniaxial anisotropy axis provided
by the direction of the aerogel strands, and we choose
the coordinate systems with ; we ignore here the
spin structure of the order parameter (but later it will
be important for the consideration of spin dynamics).

The nodal line, where the spectrum of negative
energy states touches the spectrum of positive energy
states, is at  and , see Fig. 1 (left). In the
vicinity of the Dirac line, there emerges the peculiar
type of quantum electrodynamics with the non-ana-
lytic action for the effective electromagnetic field,

 [22].
Here, we show that the spectrum of spin waves

(magnons)—the Goldstone modes of the polar
phase—also experiences the topologically protected
Dirac nodal line, but now in the parameter space, see
Fig. 1 (right). This spectrum at different magnitudes and
orientations of magnetic field has been measured in [23].
The equation for magnetization  in the spin-wave
modes follows from the Leggett equations, obtained
using the free energy for spin dynamics, see [24]:
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Fig. 1. (Color online) Exceptional lines of level crossing
analyzed by von Neumann and Wigner [2] in the polar
phase of superfluid 3He. The geometric Berry phase
around these lines changes by . Left: Dirac line in the
quasiparticle spectrum in space of the components of
momentum . At this topologically protected
line ( , ) the energy of the Bogoliubov quasi-
particles in Eq. (1) is zero. Right: Dirac line in the space of
parameters—components of magnetic field ,
which determine the frequency of magnons in Eqs. (3) and
(4). At this topologically protected line ( ,

, where  is the Leggett frequency) the branch
of optical magnon and the branch of light Higgs mode [25,
26] cross each other, see Fig. 2.
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Fig. 2. (Color online) For magnetic field , two
branches of magnon spectrum (light Higgs mode 
and optical magnon ) do not interact with each
other and cross each other at the exceptional point

. In the 3D space of magnetic field this Dirac
point becomes the Dirac degeneracy line in Fig. 1 (right).
These two branches form the Dirac cone, which is on the
border between the tilted and overtilted cones. In other
words, the Hamiltonian (4) describes the bosonic Dirac
system, which is on the border between the type-I and
type-II.

⊥ ˆH m
ω = ΩP

ω = γH
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Here,  is the external magnetic field;  is gyromag-
netic ratio; the unit vector  is the spin part of the
order parameter, which determines the easy axis of
spontaneous anisotropy of spin susceptibility . The
last term in Eq. (2) is the spin-orbit coupling, where

 is the so-called Leggett frequency, the frequency of
the longitudinal NMR. The equation for magnetiza-
tion has the following matrix form [23]:

(3)

(4)

Here, the two-component function is 
, where  and  are the transverse

and longitudinal components of magnetization with
respect to the direction of magnetic field, and M =

 is an equilibrium magnetization;  are the Pauli
matrices connecting the two components of magneti-
zation;  is Larmor frequency;  is the angle of
magnetic field with respect to anisotropy axis , i.e.,

.
For , the two branches do not interact with

each other and may cross each other, see Fig. 2. In the
mode with , the transverse component 
oscillates. This mode is excited in transverse NMR
experiments. The mode with  and with oscil-
lating  is excited in longitudinal NMR experiments.
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In the other language, these two branches correspond
respectively to the optical magnon and the light Higgs
mode [25, 26]. The modes do not interact with each
other only at  and at . Otherwise, these
modes interact producing the observed parametric
decay of Bose–Einstein condensate of optical mag-
nons to light Higgs modes [25], and the repulsion of
the levels—the observed avoided crossing [23].

At  and  these two branches cross
each other. This is the degeneracy point of the level
crossing—the Dirac diabolical point in the space of
the two parameters,  and . If one
takes into account all three components of magnetic
field , one obtains the Dirac line (circle) ,

 in the 3D space of magnetic field
 in Fig. 1 (right), where the spectrum is

degenerate. Close to the Dirac line, the Hamiltonian
in Eq. (4) transforms to:

(5)

where . Equation (5) is analogous to Eq. (1),
with  and  playing the roles of Fermi velocity
and Fermi momentum, and  being the analog of gap
amplitude. Since the analog of the Fermi velocity coin-
cides with the derivative of the first term on the right-
hand side with respect to H, the Hamiltonians (4) and
(5) describe the bosonic Dirac system, which is on the
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border between the type-I and type-II [27–30]. The
Higgs mode in Fig. 2 is “dispersionless,” ,
which is on the border between the tilted ( )
and the overtilted ( ) Dirac cones.

In both cases of fermionic and bosonic spectrum in
Fig. 1, the Dirac nodal line has nontrivial topological
charge , see, e.g., [31, 32]:

(6)

Here,  is the traceless part of the matrix , and the
integral is along the loop  in momentum or parame-
ter space enclosing the Dirac line. The nontrivial
topology means that when the momentum  in Fig. 1
(left) or magnetic field  in Fig. 1 (right) adiabatically
evolves along this loop, the corresponding geometric
Berry phase  changes by .

In conclusion, there are two topologically pro-
tected Dirac lines in the polar phase of superfluid 3He.
One of them is fermionic, which lives in the 3D
momentum space . It gives rise to the pecu-
liar type of the effective quantum electrodynamics
[22]. The other one is bosonic and lives in the 3D
parameter space . The NMR spectrum
near this Dirac line has been experimentally studied in
[23]. The next task should be to combine the effects of
the two Dirac lines, which form the 2D degeneracy
manifold in the extended 6D momentum + parameter
space ( . This will involve the
effects related to dynamics of Bogoliubov quasiparti-
cles near the fermionic Dirac line interacting with the
spin waves in vicinity of the bosonic Dirac line, such as
adiabatic Thouless pumping [33, 34].
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