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1. Interest in study of new phase states of spin sys-
tems of magnetic materials has grown for the last three
decades [1–7]. Isotropic magnetic materials with the
spin  can exhibit not only phases with a mag-
netic order, i.e., with a nonzero average value of the
spin at the site , but also phases with , where
the spontaneous breaking of rotational symmetry is
due to the average values of spin multipoles. Such a
state called spin nematic was first found for magnetic
materials with the spin  [1–3]. The geometric
image of this phase is a quadrupole ellipsoid repre-
senting the tensor , which is an
ellipsoid of revolution of the ground state, and the
symmetry of the state at the site is . For this system,
an orthogonal nematic phase with perpendicular prin-
cipal axes of quadrupole ellipsoids was also found [5].
For higher spins , nematic phases demonstrate
qualitatively novel properties. Phases with 
were found for the spin ; for these phases, the
time reversal symmetry is broken because of the three-
spin averages (two-dimensional pseudospin vector )
[3, 6] and antinematic phases with antiparallel  vec-
tors in the sublattice [6]. Two different types of nem-
atic states of the system with the spin  [7] and
fractional vortices in these phases [8] were studied.

Nematic states appear for models including all
higher exchange invariants of the form  with

. In many magnetic materials, the contribution
of higher exchanges is much smaller than the Heisen-
berg contribution, but nematic phases of spin systems
with  are important for studying states of
ultracold atomic gases in optical traps [9], for which
higher exchange integrals are not small [7, 10]. Con-

densates of Rb and Na atoms with the spin 
are experimentally implemented [11].

In this work, we study phase states and their stabil-
ity for a model of an isotropic magnetic material with
the spin  including the interaction between near-
est neighbors at low temperatures in the mean field
approximation. We find new phases with a two-sublat-
tice structure and plot the phase diagram at an arbi-
trary relation between the parameters of the Hamilto-
nian.

2. The Hamiltonian of the isotropic magnetic
material with the spin  including the complete
set of spin invariants has the form

(1)

where summation is performed over all pairs of nearest
neighbors on the lattice allowing the decomposition
into two sublattices with translation vectors  and 
and , , , and  are the exchange integrals.

The state vector of the system can be represented in
the form of the direct product of state vectors of the
spin operator  with  at each site . The state
vector at a given site can be written in the form of a
superposition of five vectors  with a given spin pro-
jection  on the quantization axis (z axis),

, , where the coeffi-

cients  belong to the complex projective space .
At low temperatures (in the limit ), the energy
of the system in the molecular field approximation
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coincides with the average value of the Hamiltonian
over the state vector, .

For the simplest single-sublattice phases, the states
of spins at each site are identical and the energy

 depends on eight real parameters. In view
of the isotropy of the system, the number of indepen-
dent parameters can be reduced. We assume that the
average spin, if it is nonzero, is parallel to the z axis.
Then, , only the superpositions of 
with  values differing by no less than 2 can be writ-
ten, and the tensor  can be chosen diagonal. Under
these conditions, one can consider only two forms of
the trial state vector at the site,  or :

(2)

(3)

Further, it is easy to express the free energy of the sys-
tem at zero temperature for each of the functions 
in terms of the parameters  or ϕ, , respectively. The
stability of the found phases will be discussed below.

We begin with the vector , for which the energy
(per spin) is given by the expression

(4)

where  and .

It is easily seen that the minimum at 
corresponds to a ferromagnetic state in which 
and ; i.e., the average value of the
spin at the site is maximal, . The second state
with Eq. (2) appears at  and corresponds to

 and the state vector

(5)

Such a state was found in the model of the Bose gas
of atoms with the spin  and contact interaction
[7] with the use of the Majorana representation (the
spin state  is determined by  points on the unit
sphere, see [12]). These four points for the state given
by Eq. (5) coincide with the vertices of a tetrahedron
[7]; therefore, it is reasonable to call this state
tetrahedral nematic, for which , and the quad-
rupole ellipsoid is degenerate into a sphere,

. The spontaneous breaking of
symmetry is determined by averages, which are cubic
in the components of the spin operator and are not
invariant with respect to time reversal . For the
particular form (5), only  and

 are nonzero. For the visual representation of
their geometric properties, we note that
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, which is invari-
ant with respect to rotations about the  axis by an
angle of . This indicates the existence of the third-
order axis  coinciding with the z axis. The same
properties occur for three directions that make an
angle of  with the z axis and have
the polar angles of . The z axis and these
three axes are oriented as the axes of the  tetrahe-
dron with one of the vertices at a positive z value.

The energy for the second trial function  given
by Eq. (3) is described by the formula

(6)

The minimization of Eq. (6) gives not only ferro-
magnetic and tetrahedral nematic states (when ,

 and ,  but also a new spin
nematic state at  with zero spin , for
which

(7)

and the energy given by Eq. (6) is independent of .
The geometric image of the spin nematic state in the
spin space at  is a biaxial ellipsoid

(8)

We recall that quadrupole ellipsoids for nematic
states of magnetic materials with  and 
are uniaxial (symmetry , which in the case of
Eq. (8) occurs only at  and . The total sym-
metry  is present only at  when  and

, and the ellipsoid is degenerate into a
flat disk. The quadrupole ellipsoid at  is also uni-
axial, , , but the symmetry of
the state is reduced owing to fourth order averages,

; i.e., the sin-
gle-site state at  is characterized by the  sym-
metry axis [7]. The authors of [13] showed that the
inclusion of thermal f luctuations results in the choice
of only one of two values,  or  (it will be
shown below that the state with  is also possi-
ble).

States of the magnetic material in the model given
by Eq. (1) can include phases with different spin states
in two sublattices. The existence of an antiferromag-
netic state is obvious. The unitary transformation

, i.e., the rotation of the
spins of the second sublattice by the angle  about
the x axis, reduces the problem to the study of a homo-
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geneous state for the Hamiltonian given by Eq. (1).
Similar to magnetic materials with S = 1 and 3/2, the
antiferromagnetic state is characterized by the satu-
rated spin values  and by the antiparallel ori-
entation of spins of sublattices.

To analyze the stability of the phases described
above with respect to arbitrary small perturbations, we
find the spectrum of all branches of elementary exci-
tations (magnons) . For a magnetic material with
the spin , there are four such branches, 
specifies the mode number, and  is the wave vector
belonging to the Brillouin zone. The presence of insta-
bilities at  values that are not low not only indicate
transitions to multisublattice phases but also allow
understanding their sublattice structure. Magnon
spectra were obtained by the Green’s function method
for the Hubbard operators [14, 15]. The analysis is
almost the same as that for the magnetic material with
the spin S = 3/2 [16]; for this reason, we omit the
details of the calculation. The representation of the
results in terms of four exchange constants is clearer
for the following combinations of the variables

, , 
, and  for the real projective

space

(9)

considering its cross sections at a fixed z value.
The simplest spectra are characteristic of the tetra-

hedral nematic phase because three branches for it are
degenerate and have a linear dispersion law at ,
in agreement with the general result on the number of
gapless magnon branches [17] in the presence of a high
(tetrahedral) symmetry of the state at the site. The
indicated three branches correspond to the turns of
axes of tetrahedra and the corresponding oscillations
of the average spin. Instability associated with these
branches determines transitions to states with a non-
zero spin. Such an instability with respect to perturba-
tions with small values  or with , where

 corresponds to the edge of the Brillouin zone,
occurs at  or , respec-
tively. The fourth branch (with a finite energy gap) is
determined by oscillations of multipole moments at

. Under the conditions  or  for
perturbations with  or with , respec-
tively, it describes the instability with respect to a tran-
sition to other nematic states.

In the ferromagnetic phase, one of the four exci-
tation branches is gapless and corresponds to the pre-
cession of the spin. The stability of the ferromagnetic
phase is determined by activation branches. The ferro-
magnetic phase loses its stability with respect to long-
wavelength perturbations ( ) at 
and at . Thus, the region of stability of the tetra-
hedral nematic and ferromagnetic phases can touch
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each other at  and . Instability
with respect to perturbations with  occurs at

, which indicates a transition to a two-
sublattice phase.

For the antiferromagnetic phase, states of spins in
different sublattices are energetically equivalent, and it
is reasonable to consider magnons in the expanded
band scheme. For all four branches of the spectrum,
the energies are determined by the relation

, where ,
 is the set of  vectors of nearest neighbors, 

at , and  at . One of these
branches is Goldstone and 

 and  at  for
it. Since , the antiferromagnetic phase is unsta-
ble at . The analysis also indicates the
presence of instabilities of the antiferromagnetic phase
at  and .

Thus, the picture of transitions is more complex
than that for the magnetic material with the spin

, where the regions of stability of phases were
determined by signs of only two combinations of the
parameters,  and  (see [6]). The analysis is diffi-
cult also because the form of magnon spectra of the
spin nematic phase depends on the parameter  (see
below). However, the picture of phase states is the
simplest for  and it is appropriate to begin with
the analysis of this case.

The nematic phase does not appear at  (more
precisely, the conditions of its stability at any  value
are satisfied only on the line segment , ,

). Both the ferromagnetic and antiferro-
magnetic phases become unstable on the straight lines

 and , whereas the tetrahedral
nematic phase is stable at ,

, and  (Fig. 1). The regions of sta-
bility of these three phases on the (x, y) plane are
bounded from below by lines on which instability with
respect to perturbations with  occurs; i.e., a
certain two-sublattice phase should appear in the
remaining part of the plane. The analysis shows that
this two-sublattice phase has a tetrahedral symmetry
(  and ) at each site, and the states 
and  in each of the sublattices have the form of
orthogonal vectors

(10)

The nontrivial averages of the spin components for
the first and second sublattices have opposite signs,

 and ,

and it is reasonable to call this state the tetrahedral
antinematic phase. The geometric images of states in
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each of the sublattices for it are tetrahedra with oppo-
site directions of vertices, which are turned with
respect to each other about the z axis by an angle of

.
The tetrahedral antinematic phase, as well as the

tetrahedral nematic phase, possesses three degenerate
gapless magnon branches and the fourth branch has
finite activation. The conditions of stability of the tet-
rahedral antinematic phase include the inequalities

 and . Furthermore,
instabilities with respect to perturbations with 
or with  occur under the conditions  or

, respectively. These two conditions are oppo-
site to the conditions for the tetrahedral nematic
phase, and the regions of stability of the tetrahedral
nematic and tetrahedral antinematic phases at 
touch each other on the line segment ,

. Thus, the four phases described above
completely determine all states of the system at .
Transitions between phases, as for the cases  and
3/2, are first order degenerate phase transitions.

The behavior of the system is significantly different
for the cases  and . We consider the behavior
of the spin nematic phase, whose energy is indepen-
dent of the parameter , near the phase transition
lines. At  or , these transitions occur from
the spin nematic phase to the tetrahedral nematic or
tetrahedral antinematic phase, respectively, whereas at

 or , the spin nematic phase transits to the
ferromagnetic or antiferromagnetic phase, respec-
tively. In contrast to the energy, the character of mag-
non spectra depends significantly on . In particular,
the spin nematic phase with the symmetry 
( ) includes pairwise degenerate modes: two
activation modes and two modes with zero gap and a
linear dispersion law. For , 0, there are three
modes with a linear dispersion law and different veloc-
ities, but the velocities of two of them coincide at 
when the system has a higher symmetry .

π/3
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In the spin nematic phase, modes with  are
softened near transition lines to the ferromagnetic or
antiferromagnetic phase and modes with  are
softened near transition lines to the tetrahedral nem-
atic or tetrahedral antinematic phase. These  values
should be expected in the spin nematic phase. This
corresponds to the result reported in [13], according to
which a fixed  value is determined by thermal correc-
tions to the free energy of the spin nematic phase (the
so-called order-by-disorder mechanism). This corre-
spondence is clear: the softer mode makes a more sig-
nificant contribution to the free energy. The transition
lines between spin nematic phases with  and

 are determined by the conditions
 and  (Fig. 2).

Thus, the spin nematic phase exists only at 
inside the rectangle  and . On all
these lines, as well as on (ferromagnetic  tetrahedral
nematic) and (antiferromagnetic  tetrahedral
antinematic) transition lines, first order degenerate
phase transitions occur. However, a finite region of
coexistence of phases with different sublattice struc-
tures exists at  (see Fig. 2). The energies of two
phases become equal to each other on the first order
transition lines  and ;
these lines and lines of stability of coexisting phases
converge at the points ( , ) or ( ,

).
The nematic phase of the form (7) does not exist at

 and one can expect the appearance of a two-sub-
lattice orthogonal nematic phase [5]. The structure
of the orthogonal nematic phase is determined by
states (3) with the values  and  in sublattices.
The analysis shows that the  parameters in sublattices
coincide with each other, whereas the  and  values
differ by . The inclusion of thermal corrections
separates the values  and . In this
case, quadrupole ellipsoids are biaxial with the princi-
pal axes , , and  and values ,

, and . The “intermediate” 
axes for different sublattices are collinear and the axes
with the maximum and minimum  values are per-
pendicular to each other. The magnon spectrum in this
phase has four modes, three of which are gapless.
According to the analysis of spectra of elementary exci-
tations, the region of existence of the orthogonal nem-
atic phase is determined by the inequalities 
and . In this case, two
regions (marked by LS in Fig. 2b) remain on the (x, y)
plane, where two-sublattice phases exist with a symme-
try lower than the symmetry of phases adjacent to them
(antiferromagnetic and tetrahedral nematic or ferro-
magnetic and tetrahedral antinematic for the left or
right LS region, respectively). For LS phases, both
(unsaturated) spins of the sublattices and correlation
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rahedral nematic, and TAN is the tetrahedral antinematic.
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functions , ,
are nonzero; of four  axes characteristic of the tetra-
hedral nematic and tetrahedral antinematic phases,
only one axis parallel to the z axis “survives.”

3. To summarize, we have completely analyzed the
phases of a magnetic material with the spin  and
the general form of isotropic interaction (1). The
appearance of nondegenerate phase transitions
between phases has been revealed for the first time:
depending on the sign of the parameter , either the
first order phase transition with a finite region of coex-
istence of phases or two second order phase transitions
through a phase with a low symmetry occur. In con-
trast to systems with  and  with the symmetry

 at the site, in systems with , we have found
phases for which the symmetry at the site is discrete:

χ + χ = χ3( cos sin ) cos 3x yS S C <| | 2C

3C

= 2S

z

= 1S 3/2
∞C = 2S

an orthogonal nematic phase with a biaxial symmetry,
as well as tetrahedral nematic and tetrahedral antine-
matic phases with a tetrahedral symmetry at the site.
Because of the nontrivial properties of the order
parameter of these phases, three Goldstone branches
of elementary excitations [17], as well as features of
topological defects, appear. The homotopic group 
for the found phases is noncommutative, and non-
Abelian topological defects known for standard biaxial
nematics exist [18–20]. The possibility of experimental
excitation of nontrivial topological defects (fractional
vortices) for systems with  was discussed in [8].
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phases. This work was supported in part by the Russian
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00069 (for Yu.A.F. and O.A.K.) and 16-42-910441
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