
384

ISSN 0021-3640, JETP Letters, 2017, Vol. 105, No. 6, pp. 384–387. © Pleiades Publishing, Inc., 2017.
Original Russian Text © A.B. Babaev, A.K. Murtazaev, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 6, pp. 363–366.

Tricritical Point for the Three-Dimensional Disordered Potts Model 
(q = 3) on a Simple Cubic Lattice

A. B. Babaeva, b, * and A. K. Murtazaeva, c

a Amirkhanov Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, 367003 Russia
b Dagestan State Pedagogical University, Makhachkala, 367003 Russia

c Dagestan State University, Makhachkala, 367025 Russia
* e-mail: b_albert78@mail.ru

Received February 13, 2017; in final form, February 21, 2017

Slightly diluted magnetic systems described by the disordered three-dimensional Potts model with the num-
ber of spin states  are studied in the case of a simple cubic lattice. The position of the tricritical point in
the phase diagram is determined using the histogram Monte Carlo technique.
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1. INTRODUCTION

Currently, the studies of phase transitions and crit-
ical phenomena in the systems with the disorder deter-
mined by quenched magnetic impurities and by vari-
ous other structural defects attract a considerable
attention. This occurs because modern microelec-
tronics (and spintronics) has achieved such a minia-
turization level that it is impossible to neglect the
influence of such defects on the performance of
microelectronic devices and circuits. Moreover, the
effect of quenched disorder on different characteristics
of magnetic systems is of fundamental interest [1].

The work by Harris [2] dealing with the effect of
quenched disorder, which is created by nonmagnetic
impurities, on the critical characteristics of magnetic
materials has stimulated considerable interest in stud-
ies of the critical behavior in structurally disordered
systems. According to the corresponding criterion of
disorder occurring in the form of quenched nonmag-
netic impurities, these defects are efficient only if the
specific heat of the homogeneous system diverges at
the critical point; i.e., the critical exponent of the spe-
cific heat is positive, . Appreciable progress has
already been achieved in the understanding of specific
features of the effect of quenched disorder, occurring
in the form of nonmagnetic impurities [1], random
bonds [3], and random magnetic fields [1, 4], on the
critical behavior of magnetic systems.

On the other hand, several studies [5–7] have
demonstrated that the quenched disorder can give rise
to the change in the order of the phase transition in the
systems, which exhibit a first order phase transition in
the absence of dilution. In experiment, such behavior

was observed for the phase transitions in liquid crystals
within a porous host material [8].

In the case of low-dimensional systems ( )
described by the Potts model with the number of spin
states , the presence of even infinitesimal disor-
der is sufficient to transform the first order phase tran-
sition to the second order one [6, 9]. For the homoge-
neous systems with  dimensions, which exhibit
the first order phase transition, the situation can be
quite different. The quenched disorder introduced in
this case can give rise to the tricritical point , below
and above which the second and first order phase
transitions occur, respectively. The main aim of the
present work is to determine the position of the tricrit-
ical point for the systems described by the three-
dimensional Potts model with the number of spin
states .

The determination of the exact position of the tric-
ritical point is quite important for the development of
different new magnetic materials, as well as for studies
of the effect of quenched disorder on various thermo-
dynamic characteristics. In the available publications,
the results for the tricritical point [10–12] in the sys-
tems described by the Potts model with  are not
quite definite. The tricritical point in [10] and in [11,
12] is observed at  and 0.76(8), respec-
tively.

In contrast to [10–12], we implement the
quenched disorder in a conventional way using non-
magnetic impurities (by specifying the relative content
of magnetic sites). Note that the disorder brought
about in the form of nonmagnetic impurities and the
disorder of the random bond type should be character-
ized by the same universality class [1, 3]. Earlier, we
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determined the tricritical points with the accuracy of
0.01 for the Potts model with  in the cases of the
disorder implemented in the form of nonmagnetic
impurities [13] and for the disorder of the random
bond type [14]. In the case of , the position of the
tricritical point has not yet been found with a good
accuracy.

The interest in the disordered Potts model with the
number of spin states  arises because it describes
the physical properties of many multicomponent
alloys and liquid crystals in the aerogel host material.
Structural phase transitions in some materials such as
SrTiO  are also described by the Potts model with

.

2. MODEL AND ITS ANALYSIS

For the simple cubic lattice, the Hamiltonian of the
three-dimensional disordered Potts model with the
number of spin states  can be written as [15]

(1)

where  is the parameter characterizing the ferromag-
netic exchange interaction of the nearest-neighbor
spins and  and 0 (if site  is occupied by a mag-
netic atom and a nonmagnetic impurity, respectively).

In [16, 17], it has been shown that this model in the
absence of the structural disorder exhibits a weak first
order phase transition, which could be expected based
on the mean-field theory [18]. To determine the tric-
ritical point, we studied the thermal characteristics of
the system as functions of its linear size L using the
histogram analysis of the data within a very narrow
dilution range ( ).

The tricritical point for disordered systems can
hardly be determined using conventional theoretical
and experimental techniques because it is nearly
impossible to prepare the samples with the clearly
specified and distributed impurity densities. More-
over, most of the conventional theoretical techniques
are inapplicable to disordered systems [1]. Therefore,
such systems described by microscopic Hamiltonians
can be rigorously and consistently treated by the
Monte Carlo methods allowing one to study the ther-
mal parameters of the spin systems with any degree of
complexity at any controlled nonmagnetic impurity
densities.

In our study, we use a highly efficient Wolff cluster
algorithm [19] of the Monte Carlo method. In more
detail, we have described this algorithm in [20, 21].

To analyze the character of the phase transition, we
employ the histogram analysis of the Monte Carlo
data [22, 23]. In the histogram data analysis, the prob-
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ability of finding the system with the energy  and the
order parameter  is given by the expression [22]

(2)

where  is the number of configurations with
the energy  and order parameter ,  is the
energy distribution function for the whole system, and

 is the inverse temperature.

3. RESULTS OF THE SIMULATIONS
The calculations were performed for the systems

with periodic boundary conditions. We studied the
 systems, where L = 20–90 with the

relative spin contents , 0.97, and 0.95. To
drive the system to the equilibrium state, we calculated
the corresponding relaxation time  for each system
with the linear size . Then, the averaging was per-
formed over a part of the Markovian chain of length

. In addition, we performed the averaging
over different initial configurations. In the case of

, we used ten initial configurations for the aver-
aging. For the system with and 0.95, we per-
formed the configurational averaging over 1000–
3000 different configurations. The technique of aver-
aging over the ensemble of disordered systems with
different realizations of the quenched disordered is
discussed in detail in [16].

To determine the critical temperatures, we used the
technique based on the fourth order Binder cumulants
[24]. The technique for determining the critical tem-
peratures within the Binder cumulant approach is dis-
cussed in detail in [21, 25–27]. In Fig. 1, we show the
phase diagram describing the dependence of the phase
transition temperature on the spin concentration . In
this diagram, the critical temperatures at ,
0.95, 0.90, 0.80, 0.70, and 0.65 are taken from [17],
whereas those at  and  are deter-
mined in the present study. At  and below
this value, the system exhibits the second order phase
transition, while the first order phase transition occurs
above this point. At the same figure, we also show the
results predicted by the mean-field theory for the
phase transition temperature  [11] as a
function of the spin concentration  and by the effec-
tive medium theory [28]

(3)

where  is the spin percolation threshold ( )
and .

From Fig. 1, it follows that, at p ≥ 0.8, the calcu-
lated  dependence agrees well with the results
both of the effective medium theory and of the mean-
field theory. At , we observe an appreciable

U
m

, = , ,1( ) ( )exp[ ]
( )

P U m W U m KU
Z K

,( )W U m
U m ( )Z K

K

× × =L L L N
= .1 00p

τ0
L

τ = τ0150

= .1 0p
= .0 97p

p
= .1 0p

= .0 97p = .0 60p
= .* 0 95p

=( ) * (1)t tT p p T
p

⎡ ⎤− − −= ,⎢ ⎥−⎣ ⎦

(1)(1 ) (1 )( ) log
( )

tK
c

t
c

p e pK p
p p

cp = .0 31cp
= B/tK J k T

( )cT p

< .0 8p



386

JETP LETTERS  Vol. 105  No. 6  2017

BABAEV, MURTAZAEV

deviation of the predictions of the mean-field theory
from those based on the effective medium theory and
from the Monte Carlo data.

The histogram analysis of the Monte Carlo data
[22, 23] allows us to reliably determine the range of the
spin concentration  at which the transformation of
the first order phase transition to the second order one
occurs. This method also makes it possible to estimate
the minimum sizes of the system at which it is still pos-
sible to determine correctly the order of the phase
transition. The histogram analysis for the three-
dimensional Potts model with the number of spin
states  at the relative spin content  indi-
cates the first order phase transition as for the pure
undiluted system at . This conclusion is illus-
trated in Fig. 2, where we show the histogram of the
energy distribution near the phase transition point for
the systems with different linear sizes . In Fig. 2, we
can see that the bimodality in the energy distribution
is observed in the systems with L = 60 and 90, whereas
it is absent at L = 40. Therefore, the histogram data
analysis is appropriate for the systems with the sizes
not smaller than L = 60. The bimodality in the energy
distribution is the sufficient condition for the first
order phase transition. At the same time, for all sys-
tems under discussion with the spin content 
and the lineal sizes L = 40, 60, and 90, we observe the
energy distribution with only one peak (Fig. 3), which
is characteristic of the second order phase transition.
Such behavior was also observed at all other spin con-
tents meeting the condition . For the Potts
model with , the bimodality in the energy distri-
bution is observed at p* ~ 0.70(1) [13] in the case of
disorder coming from nonmagnetic impurities and at
p* ~ 0.74(2) for the disorder of the random bond type
[14].
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Fig. 1. (Color online) Phase diagram for the three-dimen-
sional disordered Potts model with the number of spin
states q = 3. The tricritical point is marked as ТТ.
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Fig. 2. (Color online) Histograms for the energy distribu-
tion characterizing the three-dimensional Potts model
with q = 3 at the relative spin content  and at dif-
ferent linear sizes  of the system.
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Fig. 3. Histograms for the energy distribution for the three-
dimensional Potts model with q = 3 at the relative spin
content  and at different linear sizes  of the sys-
tem.
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4. CONCLUSIONS

The histogram analysis of the Monte Carlo data for
the spin systems described by the three-dimensional
slightly disordered Potts model with q =3 has demon-
strated that the transformation of the first order phase
transition to the second order one within the Potts

model under study occurs at . A minor
increase in the relative spin content with respect to this
value results in the first order phase transition. This

leads us to the conclusion that  is the tricritical point
for this model.

This work was supported by the Russian Founda-
tion for Basic Research, project no. 16-02-00214.
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