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Recent theoretical studies of coherent charge transport in junctions involving unconventional superconduct-
ing materials such as high-temperature superconducting iron-based pnictides (FeBS) and in structures with
induced superconductivity which are formed of a thin metal layer with spin–orbit coupling in contact with
an s-wave superconductor ( ) are reported. The theoretical analysis is performed with our unified
approach based on the tight-binding method and boundary conditions obtained for it. This approach makes
it possible to take into account a complex nonparabolic and anisotropic spectrum of normal excitations in
unconventional superconducting materials and their multiband character, as well as unusual types of symme-
tries of the superconducting order parameter in them. The possibility of a semiclassical description in the case
of intraorbital superconducting pairing is demonstrated. The method of calculations and their results are pre-
sented for the conductivities of junctions between a normal metal and unconventional superconducting mate-
rials, as well as for the Josephson current. Comparison with the experiment for the junction with FeBS is per-
formed and indicates the presence of the unusual  symmetry of the order parameter. An experiment is pro-
posed to test our theoretical results for .
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Investigation of new unconventional supercon-
ducting materials such as high-temperature iron-
based superconducting pnictides (FeBS) [1], super-
conducting perovskites Sr RuO  [2], doped supercon-
ducting topological insulators Cu Bi Se  [3], and also
heterostructures consisting of a semiconductor with
spin–orbit coupling or a topological insulator in con-
tact with a conventional s-wave superconductor [4] is
of great current interest. In FeBS, antiferromagnetism
and superconductivity can paradoxically coexist,
unconventional types of superconducting pairing
caused by both spin f luctuations [5] (this type of pair-
ing corresponds to the  symmetry of the order
parameter sign alternating over energy bands) and
orbital f luctuations [6] with the  symmetry of the
order parameter sign constant over energy bands were
predicted, and the possibility of interorbital pairing
was considered [7]. The chiral -wave symmetry of
the order parameter in Sr RuO  was predicted [2].
The possibility of appearance of the so-called Majo-
rana modes [4], which can be used in a fault-tolerant
quantum computer, at the edges of doped supercon-
ducting topological insulators Cu Bi Se  [3] and 

was predicted. Efficient methods of studying uncon-
ventional superconducting materials, including the
determination of the symmetry of the order parame-
ter, are tunneling spectroscopy [8] and investigation of
phase dependences of the Josephson current in various
types of superconducting junctions with such materi-
als [9, 10].

Common properties of the new unconventional
superconducting materials listed above with both
intrinsic and induced superconductivity are many
bands in their energy spectra, a complex nonquadratic
spectrum of single-electron excitations, and a super-
conducting order parameter expectedly anisotropic
and sign-alternating over bands. For this reason, it is
reasonable to describe coherent charge transport in
their junctions with various materials within a univer-
sal method involving these features listed above. This
approach developed recently in our works [11–16] is
described in this review. Previous theories of coherent
charge transport in such structures [4, 17–36] are phe-
nomenological.

The review is organized as follows. First, we pres-
ent the idea of our approach based on the tight-bind-
ing method with our boundary conditions for charge
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transport in a single-orbital one-dimensional junction
between a normal metal and a superconductor (N/S
junction). Further, we demonstrate the application of
this method to calculate charge transport in an N/Sp
junction of FeBS with a normal metal, which is
described within a two-orbital model of FeBS for var-
ious orientations of the iron planes of FeBS with
respect to the interface. We demonstrate the possibil-
ity of the semiclassical description of such a transport
problem in the case of intraorbital pairing in a multi-
band superconductor under the semiclassical condi-
tion, i.e., the smallness of the magnitude of the super-
conducting order parameter as compared to the Fermi
energy and hopping parameters in the crystal lattice.
Next, we describe a method for the calculation of the
Josephson current in multiorbital superconductors by
the tight-binding method and apply this method to
calculate the phase and temperature dependences of
the Josephson current in the S/Sp junction for various
orientations of the crystallographic axes of FeBS with
respect to the interface. Comparison with the experi-
ment is performed. Coherent charge transport in the

 structure with induced superconductivity is theo-
retically studied and its Hamiltonian is microscopi-
cally obtained and is used to calculate the normal and
Josephson currents for various types of junctions
involving . Finally, the results of the work are sum-
marized and conclusions are made.

We demonstrate our tight-binding method in
application to the simplest model problem for the
junction between the normal metal and superconduc-
tor (Fig. 1).

In the case of superconducting pairing of states at
one site (orbital), the electron  and hole  ampli-
tudes satisfy the discrete tight-binding equations [12]

(1)

These equations generalize the Bogoliubov–de
Gennes equation to the case of a discrete lattice [37].

We showed in [11, 12] that the discrete description
of transport in terms of tight-binding theory in the
junction between a normal metal with identical hop-
ping parameters between cells  at zero superconduct-
ing pairing potential  (left part of Fig. 1,
filled red circles) and a superconductor described by a
homogeneous order parameter , , and
identical hopping parameters between cells  (right
part of Fig. 1, open blue circles) with the interface
described by the hopping parameter  is similar to the
known Blonder–Tinkham–Klapwijk theory [38],
which was previously formulated only in the contin-
uum limit. To this end, we used an approach known in
the theory of semiconductors [39], which makes it
possible to coherently match discrete wavefunctions
on atoms described within the tight-binding method.
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The approach proposed in [39] is not limited by the
assumption of a quadratic spectrum of normal exci-
tations in contacting materials and is formally reduced
to the matching of the equation for the left metal
(Eq. (1) with ) continued to one cell behind the
interface with the equation including hoppings through
the interface and vice versa for the right metal (Fig. 1):

(2)

Here, the discrete electron wavefunctions 
for  describe the left metal and the wavefunctions

 for  refer to the right metal. In the
continuum limit, the discrete boundary conditions (2)
are transformed to the known boundary conditions
[40–42] obtained in the effective mass approximation.
The boundary conditions given by Eqs. (2) ensure the
conservation of the probability f lux  through the
interface [11, 12]:

(3)

Similarly, using the method proposed in [39] and
the boundary conditions (2), one can obtain from
Eqs. (1) the following boundary conditions for the
junction between the normal metal and superconduc-
tor (Fig. 1):

(4)

Here, the discrete wavefunctions  describe the
electron states in the right (left) metal, as in Eqs. (2),
whereas the wavefunctions  describe the
respective hole states:
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Fig. 1. (Color online) Scheme of the one-dimensional cell
of atoms of the N/S structure.
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The wavefunctions in the normal metal and supercon-
ductor contain four unknowns , , , and . The
unknowns a and b describe waves Andreev and nor-
mally reflected to the normal metal, respectively,
whereas the unknowns c and d describe waves passed
to the superconductor. These four unknowns ( , , ,
and ) are unambiguously determined from the
boundary conditions (4). In Eqs. (5), is the distance
between atoms of the normal metal and superconduc-
tor (for simplicity, we assume that all these distances
are the same, but this assumption is not necessary
[39]), and  are the wave vectors in the nor-
mal metal and superconductor, which correspond to
the energy  of propagating waves. These wave vectors
are determined from the solutions of the spatially
homogeneous Bogoliubov–de Gennes equations (1)
for the normal metal and superconductor. The elec-
tron and hole Bogoliubov coefficients  corre-
sponding to waves propagating in the superconductor
with the wave vector  are also determined from
solutions of the spatially homogeneous equations (1)
with .

It can be shown [11, 12] that the wavefunctions
obtained with the use of the boundary conditions (5)
ensure the conservation of the probability f lux through
the  interface. The expression for the probabil-
ity f lux  in the one-dimensional lattice (Fig. 1) fol-
lows from the discrete Bogoliubov–de Gennes equa-
tions (1):

(6)

The above consideration in the tight-binding
approximation concerns an equilibrium situation with
zero voltage drop  at the  interface. The pro-
posed model can be generalized to the case of a finite
voltage  across a microcontriction with sizes
much smaller than the elastic  and inelastic  mean
free paths, when charge transport occurs through
independent transverse modes. The current f lowing in
each mode is determined by the difference between
the incoming  and outgoing  electron
fluxes in the normal metal [38]:

(7)

where ,  is the equilibrium
Fermi distribution, , and

(8)

Here,  is the probability of Andreev reflection of
a hole from the normal metal to an electron,  is
the probability of normal ref lection of the electron,
and  and  are the probabilities of the trans-
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mission of electron- and hole-like quasiparticles from
the superconductor to the electron states of the normal
metal, respectively. The probabilities A, B, C, and D
appearing in Eq. (8) are determined from the bound-
ary conditions (4) and Eqs. (3) and (6) for the proba-
bility f lux. When calculating the probabilities A, B, C,
and D, the incident quasiparticle states should be nor-
malized so that the probability f lux in these states
given by Eqs. (3) and (6) would be unity. Such a nor-
malization ensures thermodynamic equilibrium at
zero voltage  at the N/S junction.

Charge transport through the junction between the
normal metal and an unconventional single-orbital
superconductor, e.g., a two-dimensional -wave
superconductor, can be described similarly. Such a
description in our work [12] demonstrated that the
results of the known work [43] are reproduced by our
tight-binding method.

We now consider charge transport through the
interface between the normal metal and multiband
superconductor. As a multiband superconductor, we
take FeBS (N/Sp interface) described within a two-
orbital  model [44]. The Hamiltonian matrix in the
basis , where the

operator  creates an electron with the
quasimomentum  and the spin projection  on the

  orbital, for an unfilled Brillouin zone has
the form [45]

(9)

Here, the matrix elements 
, 

 describe single-elec-
tron excitations on orbitals; the matrix element

 describes the hybridization
of orbitals, where  are the hopping amplitudes in
FeBS and  are the components of the quasimo-
mentum; and the matrix element 

 describes intraorbital superconduct-
ing pairing corresponding to the  model.

We first consider charge transport in the  plane
of FeBS in the absence of disorientation of crystallo-
graphic axes of FeBS with respect to the interface
((100)-oriented junction, Fig. 2).

The Bogoliubov–de Gennes equations at sites of
the crystal lattice follow from Hamiltonian (9) and
have the form
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Here, the wavefunctions  and  describe
the electron and hole states, respectively. The
superscript  of the wavefunctions  of
superconducting FeBS corresponds to the 
orbital. The subscripts n and m of the wavefunction

 of FeBS describe the coordinates  and of

α β
,Ψ ( )

n m
α β
,Ψ ( )

n m

α β( ) α β
,Ψ ( )

n m

( )xz yzd d

α β
,Ψ ( )

n m xn yn

the sites of the crystal lattice, respectively (see
Fig. 2).

Similar to the derivation of the boundary condi-
tions (4) but with allowance for independent hoppings
to the dxz and dyz orbitals of FeBS (Fig. 2), we obtained
in [11, 12] the following boundary conditions for the
(100) N/Sp junction:

(11)
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where  are the hopping amplitudes through the
interface to the  orbital and  is the hopping
amplitude between atoms of the normal metal (Fig. 2).
For clarity, we assume that the periods of the crystal
lattices of the normal metal and FeBS are the same
and equal . In view of the translational symmetry of
the considered structure in the direction parallel to the
interface, the component of the quasimomentum 
parallel to the interface is conserved. In view of this
translational symmetry, the second subscript corre-
sponding to the coordinate of an atom in the direction
parallel to the interface is omitted in the electron
(hole) wavefunctions  ( ).

The wavefunctions of the considered N/Sp junction
are determined by six coefficients: two coefficients 
and describe waves Andreev and normally reflected
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Fig. 2. (Color online) Two-dimensional atomic lattice rep-
resenting the N/Sp interface in the (100) direction with
zero disorientation angle between the interface and the
crystallographic axes of FeBS.
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to the normal metal, respectively, and four coefficients c1, c2, d1, and d2 correspond to waves passed to FeBS:

(12)

where the wavefunctions  describe the electron
(hole) states in the normal metal. The wavefunctions
given by Eqs. (12) correspond to the excitation of elec-
tron–hole states in FeBS by a single-electron state
from the normal metal. The six coefficients a, b, c1, c2,
d1, and d2 are unambiguously determined from six
boundary conditions (11). The wave vectors

 in the normal metal and supercon-
ductor correspond to the energy  of the propagating
wave and are determined from the spatially homoge-
neous solutions of the Bogoliubov–de Gennes equa-
tions for the normal metal and FeBS (10), respectively.
The electron and hole Bogoliubov coefficients

 are also found from Eqs. (10). The num-
ber of waves passed to the normal metal is twice as
large as that in the standard Blonder–Tinkham–
Klapwijk model [38] because there are two bands in
the considered model of FeBS [44].

The main problem in the numerical calculations is
the determination of wave vectors  and Bogoli-
ubov coefficients  corresponding
to a fixed energy  for waves propagating in FeBS
from lengthy Eqs. (10). As was shown in [13], for the
case of intraorbital pairing (including the popular 
and  models), a significant simplification corre-
sponding to the so-called semiclassical approximation
is possible when

(13)

where  is the maximum anisotropic order param-
eter. Condition (13) is usually satisfied in FeBS. Under
condition (13), the Bogoliubov coefficients

 are factorized into the product of
the usual Bogoliubov coefficients 
corresponding to conventional superconductors [37,
38] and coherent factors , which
correspond to single-particle excitations in FeBS
(the upper left  submatrix in the Hamiltonian
matrix (9)) and are the solutions of the simple equation

(14)

at . The wave vectors in the semiclassical
approximation are also determined from Eq. (14).

In the case of interorbital pairing [7], the semiclas-
sical approximation in the above form is inapplicable.

The expression for the probability f lux in the state
with the fixed wave vector  in the direction parallel
to the x axis follows from the Bogoliubov–de Gennes
equations (10) at sites of the crystal lattice of FeBS:

(15)

It was shown in [11, 12] that the boundary condi-
tions (11) ensure the conservation of the f lux through
the N/Sp interface .

The Bogoliubov–de Gennes equations, boundary
conditions, and the expression for the f lux in the case
of the  symmetry of the order parameter in FeBS,
which is modeled by the potential Δ =

 [7], are determined simi-
larly [12].

It is noteworthy that the phenomenological
boundary conditions [18] obtained for junctions with
multiband superconductors by analogy with a quan-
tum waveguide follow from our microscopic approach
only with allowance for additional “oblique” hoppings
at the interface [12], which are not shown in Fig. 2,
and only at a certain relation between the hopping
parameters at the interface and in FeBS.

The current through the two-dimensional micro-
contriction between FeBS and metal is determined by
Eq. (7) integrated over the transverse component of
the quasimomentum : ,

where  and  are the characteristic sizes of
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. The probabilities A, B, Ci,
and Di are calculated from the boundary conditions (11)
and Eqs. (3) and (15) for the probability f lux. When
calculating the probabilities A, B, Ci, and Di, the inci-
dent quasiparticle states should be normalized so that
the probability f lux in these states given by Eqs. (3)
and (15) would be unity. Such a normalization ensures
thermodynamic equilibrium at zero voltage  at
the N/Sp junction.

The case of nonzero misorientation of the crystal-
lographic axes of FeBS with respect to the N/Sp inter-
face qualitatively differs from the case of zero misori-
entation. It is necessary to investigate transport in the
N/Sp junction at nonzero misorientation. Indeed, the
study of electron transport in junctions between the
normal metal and superconducting cuprates with non-
zero misorientation angles of the principal crystallo-
graphic axes of a cuprate and a metal contacting it pro-
vides the conclusion on the existence of the  symme-
try of the order parameter in cuprates [43]. The
coupling of the normal metal to FeBS through the
interface was described by a larger number of hopping
parameters than that at zero misorientation angle. In
addition to the hopping parameters  to the

 orbital of FeBS nearest to the N/Sp interface,
additional hopping parameters  through the
interface had to be used [11, 12]. These hopping
parameters through the interface take into account the
coupling between the orbitals of the last layer of atoms
in FeBS and the atomic layer of the normal metal next
nearest to the interface. These processes should be
taken into account because diagonal bonds in the crys-
tal lattice of FeBS are broken at the interface for a non-
zero disorientation angle. Moreover, diagonal hop-
pings in the square lattice  in the normal metal had
to be taken into account in addition to hoppings
between the nearest neighbors  [11, 12]. The men-
tioned circumstances significantly complicate the
boundary conditions, wavefunctions, and expression
for the f lux, which differ from Eqs. (11), (12), and (15)
corresponding to the case of zero misorientation angle
[11, 12]. Furthermore, in the case of a nonzero misori-
entation angle, charge transport through the N/Sp
interface occurs not only through two energy bands
but also through two valleys in these bands.

The numerical calculations of the differential con-
ductivities of N/Sp junctions showed [11, 12] that only
two-gap voltage dependences of the conductance
components with a fixed transverse quasimomentum

 in the case of the  symmetry of the order param-
eter are observed for any orientation of the interface
and for any  values. At the same time, additional
subgap features for components of conductivities can
appear in the case of the  symmetry of the order
parameter, absence of misorientation of interfaces,

= + , = +1 2 1 2C C C D D D

= 0V

d

γ , γ1 2

( )xz yzd d
γ , γ1 2''

2't

1't

yk ++s

yk

±s

low conductance of the junction, and finite  values.
These additional subgap features are due to a change
in the sign of the superconducting pairing potential
within the  model in the presence of coupling
between orbitals of FeBs at finite  values.

However, voltage dependences of the angle-aver-
aged differential conductance are usually observed in
real experiments. The angle-averaged differential con-
ductance of N/Sp junctions without the misorienta-
tion of the interface for the  and  symmetries of
the order parameter of FeBs at various chemical
potentials of the adjacent normal metal was numeri-
cally calculated in [12]. As was shown in [12], the 
and  symmetries can be distinguished only in the
case of a large Fermi surface in the normal metal. We
detected additional subgap peaks in the averaged con-
ductance of low-transparent N/Sp junctions only for
the  symmetry. We revealed the suppression of the
conductance for high transparent N/Sp junctions
owing to destructive interference [18] at low voltages
for the  symmetry as compared to similar values for
the  symmetry. Thus, in order to distinguish the 
and  symmetries in FeBS in tunnel experiments, it is
necessary to use N/Sp junctions without the misorien-
tation of the interface with a large Fermi surface in the
N layer.

Josephson transport in homogeneous junctions
between multiband superconductors and a spin-sin-
glet single-orbital s-wave superconductor was simi-
larly considered in [14, 15] in terms of hoppings in the
crystal lattice and through the interface. As a multi-
band superconductor, we took FeBS, which is
described within the two-orbital model [44], with the
possible  and  symmetries of the order parameter.
For transport in ab iron planes in the (100) direction,
the structure of orbitals and hoppings through the
interface is similar to that shown in Fig. 2, where cir-
cles in the left part of Fig. 2 correspond in this case to
an s-wave superconductor rather than to a normal
metal, as was accepted in the preceding section. We
considered an additional intermediate layer of a sin-
gle-orbital insulator (I), which is not shown in Fig. 2.
The coupling of the s-wave superconductor with the
insulator is described by the hopping parameter  and
the coupling of the insulator with the  orbitals
of FeBS is described by the hopping parameters 
through the interface. For clarity, we assumed that the
periods of the crystal lattices of the s-wave supercon-
ductor, insulator, and FeBS are the same and equal .

To calculate the Josephson current through the
junction, it is necessary to construct the Green’s func-
tion of the entire junction. To this end, we constructed
the lattice Green’s functions for the , , and 
regions and matched them at the interfaces by the

yk
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method developed in [11, 12]. The lattice Matsubara
two-orbital Green’s function is defined as [14, 15]

(16)

where  is the imaginary “time” and ,

, , and  are 
matrices in the orbital space. The components of these
matrices have the form

(17)

Here, the superscripts  and  can be 1 and 2, which
correspond to the  and  orbitals, respectively;

 is the creation operator of an
electron with the spin  belonging to the  ( )
orbital at the  site; and  is the operator
of ordering in imaginary time.

The Green’s functions  and of the conven-
tional superconductor  and insulator  are similar
to those given by Eqs. (16) and (17) but without orbital
superscripts.

Similar to the above consideration of quasiparticle
transport in N/Sp junctions, we obtained discrete lattice
versions of the Gorkov equations for two-orbital
Green’s functions (16) and (17). Similar to the deriva-
tion of Eqs. (11), we arrived at the boundary conditions
similar to Eqs. (11) and derived the equation for the cur-
rent [14, 15]. Matching the Green’s functions of the
usual superconductor, insulator, and FeBS at the 
and  interfaces with the use of the resulting bound-
ary conditions, we constructed the unified Green’s
function of the  junction by the method pro-
posed in [46] and calculated the Josephson current [14,
15]. We demonstrated that the proposed discrete
Green’s functions technique in the single-orbital limit
reproduces the known results obtained previously for
Josephson junctions consisting of usual superconduc-
tors [47–52] and -wave superconductors [53].

We similarly analyzed three-dimensional Joseph-
son transport in the  direction in  junctions by
introducing additional hopping parameters  between
orbitals of neighboring FeBS planes and the hopping
parameters  through the  interface [14, 15].

Current–phase relations and temperature depen-
dences of the Josephson current were numerically cal-
culated in [14, 15] for various transport directions with
respect to the crystallographic axes of FeBS, various
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lengths of the insulator, and various hopping parame-
ters through the interface. The Fermi energy of the
usual superconductor was chosen in the calculations
such that the Fermi surface was large enough to cover
all bands of the adjacent FeBS layer. The analysis of
the current–phase relations showed that the 
junction in the case of the  symmetry in FeBS is
always a 0 junction with the minimum free energy of
the Josephson junction at zero phase difference at it.
At the same time, at tunneling in the (100)-oriented

 junction in the case of the  symmetry in
FeBS, we predicted the presence of 0, , and  junc-
tions, when the minimum free energy is reached at the
phase difference at the junction equal to 0, , and

, respectively. In this case, the most uncon-
ventional current–phase relations with a large contri-
bution from the second harmonics and  junctions are
possible only in direct Josephson junctions without an
insulator layer I with a significant thickness. Interband
interference effects in the case of the  symmetry are
physically responsible for unconventional current–
phase relations and a large contribution from the sec-
ond harmonic.

The situation is different in the case of -oriented
 junctions. In such direct junctions in the case

of the  symmetry, a  junction occurs, but it trans-
forms to a 0 junction after addition of several atoms of
the insulator I. This transformation can be experimen-
tally detected by, e.g., placing such  junctions
in a SQUID, as was proposed recently in [54]. A sig-
nificant suppression of the critical current in such
junctions with a sufficiently thick insulator layer I was
recently revealed experimentally [55]. In the case of
the  symmetry in -oriented  junctions, a
0 junction always occurs.

Our calculations of the temperature dependence of
the critical current  of the  junction [15]
gave quite simple monotonic dependences close to the
Ambegaokar–Baratoff dependence [49] for the usual

 junction. We detected the largest difference of
 from the Ambegaokar–Baratoff dependence in

the (100)-oriented direct  junction at hopping
parameters through the interface  corresponding
to a  junction in it.

The amplitudes of microwave-induced steps on the
current–voltage characteristic of the Josephson junc-
tion were measured in [15] as functions of the micro-
wave power at voltages multiple of , where

 is the microwave frequency. The Josephson junc-
tion was made of FeBS with the composition
Ba K (FeAs)  adjacent to a needle of the usual
superconductor Pb In . The injection of the super-
current either on  iron planes in Ba K (FeAs)  or
in the  direction was performed by varying the sharp-
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ness of the Pb In  needle. The measurements were
performed at a temperature much lower than the crit-
ical temperature of Pb In . Using the standard
method [56] and only one fitting parameter of cou-
pling of microwave radiation with the junction [57],
we demonstrated that the decisive contribution to cur-
rent–phase relations in the case of injection of super-
current in the z direction comes from the first har-
monic , whereas the decisive contribution
to current–phase relations in the case of injection of
supercurrent in the  iron plane comes from the sec-
ond harmonic . These experimental results
confirm the  symmetry of the superconducting order
parameter in Ba K (FeAs) , because the above the-
ory predicts such current–phase relations in the case of
the injection of the supercurrent in the  iron plane
for most of the values of the hopping parameters 
through the interface in pure junctions. However,
direct measurement of current–phase relations in such

 Josephson junctions is desirable.

In addition purely transport problems, we consid-
ered problems of induced superconductivity or prox-
imity effect in heterostructures consisting of a metal
with spin–orbit coupling ( ) or a topological insu-
lator and a usual s-wave superconductor (see Fig. 3c).
In [16], we showed that the effective one-dimensional
Hamiltonian of the  heterostructure written in
the basis  has the form

(18)
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which differs from the usual Hamiltonian [4, 35, 36,
58] because of the presence of triplet components of
the order parameter  and  and the depen-
dence on the wave vector of the induced supercon-
ducting order parameter . We showed that
the triplet components of the order parameter 
and  are odd functions of the wave vector ,
whereas the singlet component  is an even func-
tion of . In Eq. (18),  is the energy of quasiparticle
excitations,  is the Zeeman energy corre-
sponding to the magnetic field  applied in the 
direction (see Fig. 3с),  is the Landé g-factor,  is
the Bohr magneton, and  is the Rashba spin–orbit
coupling constant [59]. Superconductivity in the 
layer is induced in the  direction owing to contact
with the usual superconductor S, whereas transport
occurs in the  direction to the material , which can
be the same heterostructure with induced supercon-
ductivity , a normal metal N, or a usual supercon-
ductor S (see Fig. 3с). To derive Eq. (18), we used the
general approach described in [60] and adapted it for
our tight-binding method [11, 12]. Using the bound-
ary conditions (4) including the spin degrees of free-
dom, we matched the wavefunctions of the usual
superconductor with eight bispinors, which describe
the wavefunctions in  [61] in the  direction at the

 interface and free boundary, and found the
wavefunctions in . Further, using a standard pro-
cedure [37, 60], we constructed the retarded Green’s
function  from the wavefunctions of the lower
subband  and found the Hamiltonian from the
equation . The resulting Hamilto-
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Fig. 3. (Color online) (a) Spectrum of quasiparticle excitations in the S layer. (b) Spectrum of quasiparticle excitations in the 
layer in the  direction. (c) Scheme of the considered heterostructure, where  can be N, S, or . (d) Scheme of the used tight
binding model.
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nian is given by Eq. (18). The single-particle compo-
nents of the Hamiltonian (18) (the upper left 
submatrix in Eq. (18) and the lower right  subma-
trix in Eq. (18)) coincide with the respective initial
component, which indicates that the derivation of
Hamiltonian (18) is correct. The described procedure
of derivation of the Hamiltonian of  is the most
general. It takes into account not only the spin–orbit
coupling in the  layer but also a finite transparency
of the  interface, thickness of the  layer, and
scattering from the interface between states of spin
subbands. These important effects were disregarded in
previous attempts [4, 35, 36] at deriving the effective
Hamiltonian of  involving the tunneling Hamilto-
nian in the momentum space.

Using the effective Hamiltonian (18), we con-
firmed well-known results for features in the conduc-
tion of the junction between this heterostructure and
the normal metal (  junction) at magnetic fields

 [62–64] and  periodicity of the Josephson
current in a symmetric junction between two such het-
erostructures with induced superconductivity
(  Josephson junction) [65], which are signa-
tures of Majorana modes at the ends of such hetero-
structures [4]. At the same time, we demonstrated that
Hamiltonian (18) gives very unconventional current–
phase relations for a sufficiently transparent junction
between heterostructures and a usual -wave super-
conductor (  Josephson junction). A decrease in
the transparency of the  interface results in usual
sinusoidal current–phase relations. Such anomalous
current–phase relations were predicted in our work
[17] for the junction between a usual superconductor
and a superconductor with interband pairing.

We demonstrated the possibility of the creation of
considered heterostructures and Josephson junctions
with the use of high-purity AlGaSb/InAs/AlGaSb het-
erostructures and niobium electrodes, as in [66, 67].

A similar analysis of the induced superconductivity
and transport properties of a heterostructure consist-
ing of a usual superconductor and a two-dimensional
HgTe topological insulator [68] within the two-orbital
model [69] with allowance for orbital degrees of free-
dom only confirmed known results [4] for quasiparti-
cle and Josephson currents in junctions with such het-
erostructure, but did not give qualitatively new results.

To summarize, we have reported recent results
[11–16] of theoretical description of coherent charge
transport and the proximity effect in junctions with
various unconventional superconducting materials
within a unified approach based on the tight-binding
method. The idea of the method has been described,
results on quasiparticle and Josephson transport in
junctions with FeBS have been reported, and induced
superconductivity in , as well as quasiparticle and
Josephson transport in heterostructures based on

×2 2
×2 2

SOS

SON
SOS/N SON

SOS

SON/S
> ch h π4

SO SOS /S

s
SOS/S

SOS/S

SON

, has been analyzed. The method described in this
work can be applied to interesting unsolved problems
of charge transport in junctions with Sr RuO  within
the three-band model, proximity effect, and charge
transport in heterostructures consisting of three-
dimensional topological insulators HgTe and Bi Se  in
contact with a usual superconductor, proximity effect
in heterostructures consisting of unconventional
superconductors, e.g., FeBS in contact with  and
other interesting problems.
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