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With the use of experimental data on the temperature dependence of the concentration of interstitial atoms,
it has been shown within the interstitial theory that the premelting nonlinear increase in the heat capacity of
aluminum can be caused by the intense generation of interstitial defects in a dumbbell configuration.
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A significant nonlinear increase in the heat capac-
ity of simple metals near their melting temperature is
now reliably established for both fusible and refractory
metals [1–7]. Figure 1 exemplifies several temperature
dependences of molar heat capacity of aluminum
taken from various works. Despite a noticeable spread
of experimental data, which is apparently due to the
methods of the measurement of the heat capacity
(e.g., adiabatic [3, 5] and isothermal [6] calorimetry)
and to the different degrees of purity of the experimen-
tal samples, the mentioned increase at temperatures
T > 800 K is quite pronounced. As was mentioned
more than once, the nature of this increase is still gen-
erally unclear [8].

The heat capacity at constant pressure Cp can be
written in the form [6, 9, 10]

Cp = Cv + VTγ2KT, (1)

where V is the molar volume, T is the absolute tem-
perature, γ is the thermal expansion coefficient, and
KT is the isothermal bulk modulus. The heat capacity
of a monatomic metal at constant volume Cv can be
represented as the sum of various contributions:

Cv = Cqh + Cah + Cel + Cvac + C int, (2)

where Cqh is the Debye heat capacity, Cah is the contri-
bution to the heat capacity owing to the anharmonic-
ity of vibrational motion of atoms, Cel is the electronic
heat capacity, and Cvac and C int are contributions from
equilibrium point defects, namely, vacancies and
interstitial atoms, respectively. We emphasize that all
attempts at the interpretation of the premelting non-

linear increase in the heat capacity completely ignore
interstitial defects, arguing this by their low concentra-
tion [11, 12]. Indeed, the statement that the equilib-
rium concentration of interstitial defects is negligibly
low was included even in modern textbooks on physi-
cal materials science (see, e.g., [13]). Correspond-
ingly, in addition to the obvious contributions Cqh and
Cel, only the vacancy and anharmonic contributions
are included.
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MATTER

Fig. 1. Temperature dependence of the molar heat capacity
Cp of aluminum taken from [1–7]. The vertical dashed
straight line indicates the melting temperature.
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The authors of [1, 3, 9] attribute the premelting
nonlinear increase in the heat capacity to anharmo-
nicity because vacancies ensure only about 1% of the
observed excess increase in the heat capacity above the
contributions Cqh and Cel. Correspondingly, they con-
clude that anharmonicity makes a positive contribu-
tion to the heat capacity. On the contrary, the authors
of [4, 14, 15] state that contribution of anharmonicity
to the heat capacity is positive. At the same time, the
authors of molecular dynamics simulation of single-
crystal aluminum [10] conclude that the contribution
of anharmonicity to the heat capacity is no more than
several percent.

Thus, the origin of the nonlinear increase in the
high-temperature heat capacity of metals is currently
under discussion. We believe that the problem is in the
incorrect inclusion of the contribution to the heat
capacity from equilibrium point defects and anharmo-
nicity. Meanwhile, the difference between these con-
tributions is incompletely definite. Some authors
believe [16] that the contribution from vacancies can-
not be separated from the contribution from anhar-
monicity. We propose a method for solving the indi-
cated problem by the correct inclusion of the contri-
bution from interstitial defects.

The most stable configuration of an interstitial
defect in monatomic fcc, bcc, and hcp metals is the
dumbbell (split) configuration [17–19]. The main
property of interstitial dumbbells is their capability of
efficiently interacting with shear stress field, initiating
additional inelastic deformation. This results in a
decrease in the shear modulus as compared to the
defect-free crystal, which, according to the main
equation of Granato’s interstitial theory [20], can be
described by the equation

G = Gperf exp (–βnint), (3)

where G and Gperf are the shear moduli of the crystal
containing interstitial defects with the concentration
nint and the perfect (defect-free) crystal, respectively,
and β is the dimensionless shear susceptibility, which
is 27 for aluminum [21].

Equation (3) demonstrates that the concentration
of interstitial dumbbells can be determined from pre-
cise measurements of the shear modulus. Such mea-
surements recently performed with single-crystal alu-
minum [22] revealed that the intense generation of
interstitial dumbbells begins above ≈870 K. In this
case, their contribution near the melting temperature
Tm is lower than the contribution of vacancies only by
a factor of 2–3. The temperature dependence of the
contribution of interstitial dumbbells obtained in [22]
is shown in Fig. 2 in comparison with the contribution
of vacancies according to the data reported in [23].

An increase in the contribution of interstitial
dumbbells with the temperature is due both to Arrhe-
nius thermal activation and to a decrease in their for-
mation enthalpy (in view of a decrease in the shear

modulus with increasing temperature), which,
together with a large formation entropy, significantly
reduces the Gibbs energy, so that, near Tm, it is only
slightly higher than the Gibbs energy of vacancies [22].
Correspondingly, the contribution of interstitial
dumbbells near Tm is only slightly lower than the con-
tribution of vacancies, as is shown in Fig. 2.

Thus, the necessity of the inclusion of the contri-
bution of interstitial dumbbells to the heat capacity
becomes obvious. This contribution can be estimated
within the interstitial theory [20], according to which
the enthalpy of interstitial dumbbells  is related to
their contribution nint as

(4)

where α ≈ 1 is the dimensionless parameter and Ω is
the volume per atom. Then, interstitial dumbbells
contribute to the molar heat capacity, which can be
represented in the form

(5)

where Na is the Avogadro number. The vacancy con-
tribution to the heat capacity can be estimated by the
formula

(6)

where  is the enthalpy of formation of vacancies
[23] and nvac is the contribution of vacancies.

Figure 3 shows the contributions of interstitial
dumbbells and vacancies to the heat capacity of single-
crystal aluminum calculated by Eq. (5) with allowance
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Fig. 2. Temperature dependence of the concentration of
interstitial dumbbells nint [22] and vacancies nvac [23] in
aluminum.
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for the temperature dependence of G [22] and by
Eq. (6) with  = 0.67, respectively.

It is seen that the contribution of interstitial dumb-
bells to the heat capacity increases sharply at T >
870 K because, as was mentioned above, their concen-
tration increases rapidly when approaching Tm. Thus,
the neglect of the contribution of interstitial defects to
the heat capacity is too rough an approximation.

To take into account all terms in Eq. (2), we deter-
mine the anharmonic, Cah, and electron, Cel contri-
butions to the heat capacity. Figure 4 shows the tem-
perature dependences of Cah and Cel for aluminum
taken from [4, 15, 24, 25].

The electronic heat capacity Cel depends on the
temperature almost linearly, so that the negative
anharmonic contribution Cah is mainly compensated
by the positive contribution from electronic exci-
tations. In further calculations, we used more detailed
and accurate data (as compared to [4, 15, 25]) on the
electronic and anharmonic contributions to the heat
capacity reported in [24].

To calculate the quantity VTγ2KT in Eq. (1), the
temperature dependences of the molar volume V,
thermal expansion coefficient γ, and isothermal bulk
modulus KT for aluminum were taken from [26], [27],
and [28], respectively. Figure 5 shows (line 1) the
experimental temperature dependence of the heat
capacity taken from [5] and the heat capacity calcu-
lated by the formula

Cp = Cqh + Cah + Cel + Cvac + Cint + VTγ2KT, (7)

(line 2) with and (line 3) without the contribution of
interstitial dumbbells Cint. The difference between
lines 1 and 3 is seen at temperatures above 850 K,
which increases when approaching the melting tem-
perature Tm. This difference is eliminated by the inclu-
sion of the contribution of interstitial dumbbell to the
heat capacity (line 2).

vac
fH A slight difference between lines 1 and 2 immedi-

ately near the melting temperature can be explained as
follows. The anharmonic contribution to the heat
capacity of aluminum was taken from [24], where it
was calculated from ab initio simulation in terms of the
second derivative of the free energy with respect to
temperature, and the functional form of the free
energy was constructed with the inclusion of only
vacancies. The simulation was performed in [24] for a
system of 500 atoms, which seems insufficient for the
accurate inclusion of the heat capacity of interstitial
dumbbells. Meanwhile, the concentration of intersti-
tial dumbbells near Tm is ≈ 10–4 (Fig. 2). Conse-
quently, the adequate inclusion of the generation of
interstitial dumbbells and their contribution to the
heat capacity requires a much larger model system of
about 104 atoms rather than of 500 atoms (which is suf-
ficient for the simulation of the vacancy contribution

Fig. 3. Contribution from interstitial dumbbells Cint and
vacancies Cvac to the molar heat capacity of aluminum. Fig. 4. Electronic, Cel, and anharmonic, Cah, contribu-

tions to the molar heat capacity of aluminum [4, 15, 24,
25].

Fig. 5. Temperature dependences of the molar heat capac-
ity of aluminum calculated by Eq. (7) (line 2) with and
(line 3) without the contribution of interstitial defects in
comparison with the data reported in [5].
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to the heat capacity. Therefore, the calculation of the
heat capacity by Eq. (7) with the contribution Cah

taken from [24] (overestimated in absolute value) gives
the Cp value near Tm overestimated as compared to the
experimental value.

The correlation of the intense generation of inter-
stitial dumbbells with a sharp nonlinear increase in the
heat capacity of aluminum indirectly confirms the
interstitial mechanism of melting of simple sub-
stances, as was implied by Granato’s interstitial theory
[20]. Since interstitial dumbbells provide the most sta-
ble configuration of interstitial defects and exist in all
basic monatomic crystal lattices, it is reasonable to
expect a similar correlation for any other simple met-
als. The fundamental difficulty for testing such an
assumption is the necessity of the precise measure-
ment of the shear modulus near the melting tempera-
ture, which is a very difficult experimental problem.
For this reason, we analyzed only the heat capacity of
single-crystal aluminum, for which reliable experi-
mental data on the temperature dependence of the
shear modulus (and, correspondingly, the tempera-
ture dependence of the concentration of interstitial
dumbbells) were obtained [22].

As far as we know, the premelting nonlinear
increase in the heat capacity of metals was not previ-
ously attributed to the generation of interstitial defects
because it was believed that their equilibrium concen-
tration is too low. The results obtained in this work
indicate that the interstitial defects in the dumbbell
configuration should be taken into account when ana-
lyzing a high-temperature increase in the heat capacity.

This work was supported by the Ministry of Educa-
tion and Science of the Russian Federation (assign-
ment no. 3.114.2014/K).
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