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Spin-dependent effects on vortex light beams propagating in an inhomogeneous medium are demonstrated
by solving the full three-component field Maxwell equations using the perturbation analysis. It is found that
the hybrid Laguerre–Gauss modes with polarization-orbital angular momentum (OAM) entanglement are
the vector solutions of the Maxwell equations in a graded-index medium. Focusing of linearly and circularly
polarized vortex light beams in a cylindrical graded-index medium is investigated. It is shown that the vortex
light beam undergoes an additional transverse force acting differently on circular polarized beams with oppo-
site handedness. The wave shape variation with distance taking into account the spin–orbit and nonparaxial
effects is analyzed. Effect of long-term periodical revival of wave packets due to mode interference in a
graded-index cylindrical optical waveguide is demonstrated.
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1. INTRODUCTION
In a scalar approximation, the light beam propa-

gating in an inhomogeneous medium is governed by
diffractive and refractive forces. When a vector wave
field is considered, the influence of additional effec-
tive forces associated with the polarization (spin angu-
lar momentum, SAM) and orbital angular momentum
(OAM) should be included. It is well established that
the polarization vector of linearly polarized optical
beams propagating over a spiral trajectory undergoes
the Rytov rotation [1, 2]. It is also of interest to con-
sider the inverse effect, i.e., the influence of polariza-
tion on the trajectory and the width of a radiation
beam. Recently, the influence of polarization on the
trajectory of a light beam propagating in an inhomo-
geneous medium (the optical Magnus effect or spin
Hall effect) has been predicted and studied [3]. The
spin Hall effect (SHE) was predicted by Dyakonov
and Perel’ [4] in solid state physics, it originates from
the coupling of the charge and spin currents due to
spin–orbit interaction (SOI). Note that there are ana-
logues between the SOI of light and the spin–orbit
interaction of electrons in solids [5]. In [6] spin trans-
verse force was proposed for electron spin moving in
an electric field in non-relativistic quantum mechani-
cal limit of Dirac equation or in semiconductor with
spin–orbit coupling.

It is well known that, when a light beam is reflected
from an interface, the longitudinal shift of the gravity
center of the beam is different for s- and p-polarized
beams [7], while the transverse shift has reverse signs
in the case of right- and left-hand circularly polarized
radiation [8]. Lateral and angular shifts for strongly
focused azimuthally and radially polarized beams at a
dielectric interface were shown in [9]. As demon-
strated in [3, 10], these Goos–Hanchen effects can
also be observed in optical waveguides. In [11] it was
experimentally demonstrated that the rotation angle of
the speckle pattern depends on the angle at which a
circularly polarized light beam is coupled into a fiber.
It was shown in [12] that spin–orbit interaction causes
asymmetry effect for depolarization of the right- and
left-handed circularly polarized light propagating in a
graded-index fiber. The depolarization is stronger if
the spirality of the rays' trajectory and photons have
the same signs and it is less if they are not the same.
The spin-dependent relative shift between right- and
left-hand circularly polarized light beams propagating
along a helical trajectory in a graded-index fiber was
shown in [13]. It was shown in [14] that the propaga-
tion of the rays with right- and left-hand circularly
polarization along different trajectories is due to the
anisotropy of the Berry’s phase. In [15], this effect was
observed experimentally for a laser beam propagating
in the glass cylinder along the smooth helical trajec-
tory. This shift can be regarded as a manifestation of
the optical Magnus effect [3] and the optical spin-Hall

1 The article is published in the original. See the supplemental
material for this paper at www.jetpletters.ac.ru.
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effect [16, 17] which arises due to a spin–orbit cou-
pling.

In this paper the influence of polarization (spin)
and OAM on a vortex light beam propagating through
the cylindrically symmetric waveguide with a gradient
profile of the refractive index is investigated by solving
the full three-component field Maxwell equations.

2. MODEL
The Maxwell equations for the electric field

Eexp(–iνt) in a general inhomogeneous medium with
the dielectric constant ε(x, y) reduce to [18]:

 (1)

where k = 2π/λ is the wavenumber and n2 (x, y) is the
dielectric permittivity of the medium, β is the propa-
gation constant.

It is assumed that the dependence on time and z is
exp[–i(νt – βz)]. Usually the vector wave equation
∇2E + k2n2E + ∇(E∇lnn2) = 0 is considered, which is
followed from Eqs. (1) by substituting ez =
(i/β)(∇⊥e⊥ + e⊥∇⊥lnn2) coming from the condition
div(n2E) into the first equation. Here, we use the sys-
tem of Eqs. (1). Note, that this system includes the
small component ez analogically to Dirac equation for

the quasi-relativistic wavefunction of an electron ,

where χ ≪ φ [19].
Rewrite the system (1) in the form

 (2)

where E = , W0 = , P =

. By formally taking the square

root of both sides, we have an equation which is equiv-
alent to the stationary Schrödinger equation for the
reduced field Ψ(x, y):
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where ε = δβ = kn0 – β and Ψ(x, y) are the eigenvalue
and eigenfunction of the Hamiltonian, respectively,
n0 = n(0, 0),

 (4)

 is the nonparaxial correction to the operator of
paraxial propagation, which has the form

The procedure contains an expansion in terms of a
small parameter η = 1/kw0, where w0 is the beam spot
size. Below the effects of the order of η2 are considered.

Note that the Hamiltonian (4) can also be easily
expressed by means of spherical tensor operators 
[18]. It was shown in [20] that vector and tensor oper-
ators completely describe the three-dimensional
polarization. The mean values t1Q =  and t2Q =

 describe the vector (rank 1) and tensor (rank 2)
polarizations, respectively.

Consider a rotationally symmetric cylindrical
waveguide with a parabolic distribution of the refrac-
tive index:

 (5)
where n0 is the refractive index on the waveguide axis,
ω is the gradient parameter, r = (x2 + y2)1/2.

The graded-index potential is chosen because in
this case the 3D polarization evolution problem can be
solved analytically.

The Hamiltonian  may be rewritten in terms of
annihilation and creation operators in cylindrical coor-
dinates [18], i.e.,  = .

The representation of the Hamiltonian via the
operators will allow us to calculate the matrix elements
analytically. Indeed, calculating the integrals

 =  we obtain the
following relations defining the action of operators on
modal solutions:
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These important relationships allow us to find the
matrix elements with the help of pure algebraic proce-
dure without the calculations of integrals. The solu-
tion of the unperturbed equation is described by radi-
ally symmetric Laguerre–Gauss functions ψvl(r, φ) =
|v, l〉:

 (7)

where v = 2p + l is the principal quantum number; p
and l are the radial and azimuthal indices, respec-
tively; and l = v, v – 2, v – 4, …, 1 or 0, ω = 2/( ),
w0 is the radius of the fundamental mode.

The numbers v and l express the eigenvalues of the
unperturbed Hamiltonian  = (ω/ )(v +
1)|v, l〉, and eigenvalues L = l/k of the angular momen-
tum operator  = (l/k)|v, l〉.

There is no mode conversion at propagation if the
incident beam is expressed by the hybrid wavefunc-
tions consisting of transverse and longitudinal compo-
nents:

 (8)

where σ = +1 and –1 correspond to right-handed and
left-handed circularly polarized beams, respectively,
and σ = 0 corresponds to the linear polarization.

Note that the hybrid wavefunction (8) cannot be
factorized into the product of spin and orbital parts
since the mixing of OAM and SAM exists. Thus, the
modal solutions of the Maxwell equations in a GRIN
media are the hybrid vector Laguerre–Gauss modes
with the spin–orbit entanglement. The longitudinal
field component can be expressed through the trans-
verse field components, i.e., |ez〉 = (i/kn0)∇⊥e⊥.

The propagation constant correct to first-order
non-paraxial term  of the Hamiltonian is given by
[21]:
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3. SIMULATION RESULTS

Consider the incident vector vortex beams with
right and left circular polarizations, respectively:

 (10)

where |vl〉 = ψvl(r, φ) = (kω'/π)1/2[p!/(p +

l)!]1/2(kω'r2)l/2 × exp(–kω'r2/2) (kω'r2)exp(ilφ),

ω' = 2/( ), a0 is the radius of a beam, which is dif-
ferent from the radius of the fundamental mode of the
medium w0 = ).

The trajectory and width of the radiation beam can
be expressed in terms of the relevant matrix elements:

 (11)

where  =exp(–ikn0 z).

Calculating the matrix elements in (11) within the
accuracy of the small parameter (ω/k)2 we obtain the
following expression for the beam radius:
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where j = l + σ is the total angular momentum, ω' = ω.

It is followed from (12) that the beam spot radius of
the circularly polarized light does not change with dis-
tance if the azimuthal l index is zero. It is seen that
beams with antiparallel OAM and SAM can be
focused into tighter spots than those for which these
angular momentum are parallel. Difference (asymme-
try) between the spot sizes of the beams with right-
and left-circularly polarizations is given by

 (13)

It is seen that the difference D increases with l. Similar
result was obtained from the uncertainty-type rela-
tions between focal spot size and angular spread [22].
Although the obtained solutions have obvious demon-
stration of the average beam radius evolution in a
graded-index fiber, the derivation of the expression for
long distances requires cumbersome calculations. A
more efficient method is the use of modal expansion
of the incident beam in order to take into account the
accumulative effects with distance. As was shown
before (Eq. (8)), the hybrid vortex Laguerre–Gauss
functions with polarization-orbital angular momen-
tum entanglement are the modal solutions.
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The arbitrary incident beam may be expanded into
modal solutions, so the evolution of a beam in the
medium (5) can be represented as

(14)

where avlσ are the coupling coefficients.
Below only the propagating modes are considered,

the evanescent waves do not reach the far-field zone.
If the incident beam is described by the Laguerre–

Gauss function  = (1/ ) , the
coupling coefficients avlσ can be calculated analyti-
cally:

 (15)

where z = 1 – 2((ω' – ω)/(ω' + ω))2,  are the

Jacobi polynomials, ω' = 2/ , ω = 2/ . The wave
shape variations with distance are determined by the
functions I⊥(r, φ, z) = |ψ(r, φ, z)|2 and Iz(r, φ, z) = |ez(r,
φ, z|2. Figure 1 shows the intensity profiles of the lin-
early polarized beams with different OAM in the focal
plane. The medium (5) with the gradient parameter
ω = 7 × 10–3 μm–1 and the refractive index n0 = 1.5 is
considered. These parameters are reasonable for con-
ventional graded-index optical fibers. Here and below,
the beams with wavelength λ = 0.63 μm are consid-
ered. The numerical aperture is determined by NA =
aω = n0 , where a is the radius of the waveguide
and Δ ≈ [n0 – n(a)]/n0. The initial beam width or the
full width at half maximum (FWHM) is a0 = 45 μm. It
is seen that the intensity distributions depend on the
SAM and OAM of the incident beam. For l = 0 the
focused spot in the longitudinal field component is
splitting into two equal parts (Fig. 1b). There is an
asymmetry between the longitudinal field component
intensity distributions for the incident beams with
opposite OAM (Figs. 1f and 1h). Note, that there is no
such asymmetry for the transverse field components.

It is followed from the simulations (see Supple-
mental Material [23]) that the beams with antiparallel
OAM and SAM can achieve tighter focal spots than
those for which the signs of the helicity and the orbital
angular momentum are the same. High efficiency
transfer of a strongly focused spot through optical
waveguide over large distances with a period of revival
is shown. Note that the long-term revivals of the
focused spots have very close analogue with the long-
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term evolution of quantum wave packets in systems
executing regular periodic motion in the classical limit
[24, 25]. The effect of long-term revival of wave pack-
ets due to mode interference at nonparaxial propaga-
tion in a planar waveguide was considered in [26].
Here, this phenomenon is demonstrated in cylindri-
cally symmetric waveguide, where the long-term
revival occurs due to spin–orbit and nonparaxial
effects.

Fig. 1. (Color online) Intensity profiles of (left column)
the transverse electric field component and (right column)
the longitudinal electric field component for the linearly
polarized incident beam in the focal plane zf = 331 μm:
(a, b) l = 0; (c, d) l = 0, 3D intensity patterns; (e, f) l = 1;
(g, h) l = –1.

(c)

(e)

(d)

It

(g)
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Consider the propagation of a strongly focused

Gaussian beam in a medium (5). Note that only the

propagating modes reach the far-field zone. For the

beam with a0 ≥ λ/(2NA) all incident power is in the

propagating modes and the periodical revivals of the

initial field intensity distribution occur at extremely

long distances. In Figs. 2a and 2b the electric field

intensity distributions in a transverse plane z =

205 mm in a waveguide with NA = 1.0 are shown for

the incident beam with a FWHM of 176 nm. The

power contained in the propagating modes amounts to

P⊥ ≈ 86% and Pz ≈ 6.6% of the total beam power if l = 0

and P⊥ ≈ 60% and Pz ≈ 7.3%, if l = 1. Note, that the

spots and doughnut rings with a FWHM smaller than

λ/(2NA) can be transferred with the help of propagat-

ing modes (Fig. 2). It is seen that the tighter focal spots

and thinner doughnut rings can be transferred into

long distances if the vortex incident beam is consid-

ered. It is followed from the calculations that the peri-

odical revivals of the initial field intensity distribution

occur at extremely long distances and the high effi-
ciency transfer of the subwavelength spot through
optical waveguide over large distances takes place with
a period of revival.

4. CONCLUSIONS

In conclusion, propagation of vector vortex beams
in an inhomogeneous medium is analyzed by solving
three-component field Maxwell equations. The polar-
ization-dependent properties of the electric field
intensity profiles in the focal plane are examined for
the beams with OAM and SAM. The asymmetry
caused by the spin–orbit and tensor interactions of
light is demonstrated. It is shown that the beams with
antiparallel OAM and SAM can be focused into tighter
spots than those for which these angular momenta are
parallel. The fundamental effect of collapse and
revival of wave packets at the propagation in rotation-
ally symmetric waveguide is examined. The long-term
periodical revival of a focused incident beam profile
taking into account the spin–orbit and nonparaxial
effects is demonstrated. Due to this effect the remote
subwavelength focusing of a light beam in an optical
fiber can be achieved without the use of the evanescent
waves. Vector modal solutions exhibiting entangle-
ment between spin (polarization) and OAM (wave-
front vorticity) may be useful for classical implemen-
tations of quantum communication and computa-
tional tasks [27].
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