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Fundamentally new gyrosolitons with helical trajectories of motion have been revealed in UO2 and PuO2
reactor fuel materials by the computer simulation of the microdynamics of high-amplitude atomic vibrations.
The phonon spectra of nanostructures, as well as of gyrotropic materials, include quasioptical branches with
different-sign linear dispersion. The corresponding branches of gyrosolitons have been revealed on the phase
plane in the spectral density of vibrations. The main dynamic event of the kinetic process of helical surfing
diffusion of impurity atoms on gyrosolitons has been observed.
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The microdynamics of high-amplitude nonlinear
vibrations of crystal lattices of U, UN, UO2, and PuO2
fuel materials at high temperatures is now experimen-
tally studied by the neutron spectrometry method.
The authors of [1] revealed a new resonance peak in
the spectra of scattering of neutrons from the α phase
of uranium at a high temperature (500 K), which was
not observed at lower temperatures, and attributed it
to the generation of a nonlinear self-localized mode. It
was shown in [2] that a dynamic multisoliton superlat-
tice could be generated in crystals at a high energy. The
splitting of an optical branch, which is caused by the
generation of a superlattice, was revealed in [3] in the
spectra of scattering of neutrons from a NaI crystal at
the reconstruction of vibrations of the crystal with ref-
erence to [2]. Promising UO2 dioxide fabricated using
nanotechnology was presented in [4]. At the Joint
Institute for Nuclear Research, on the DIN-2PI neu-
tron spectrometer, at high temperatures (up to
1500 K), spectra of the scattering of neutrons from
reactor fuel materials are measured and spectra of
vibrations of their crystal lattices are reconstructed to
determine the necessary thermodynamic characteris-
tics of the materials [5, 6].

The theory of nonlinear acoustic and infrared opti-
cal vibrations of crystals [7–11], as well as neutron and
optical experiments, showed that the nonlinearity of
vibrations, which is incompletely taken into account in
the quantum theory, is responsible not only for pho-
non–phonon scattering in an ensemble of dissociated
multiphonon states but also for the appearance of fun-
damentally new bound multiphonon states. These are
bound biphonons, triphonons, quartaphonons, and

pentaphonons in the quantum approach [8–11] and
various nonlinear waves (solitons, breathers, etc. [12]).
Triphonons [9] were observed more recently experi-
mentally [13] in the spectra of scattering of neutrons
by titanium hydride. New types of nonlinear waves
were recently revealed: undulator solitons determining
the microdynamics of structural phase transitions [14]
and bisolitons with weak [15] and strong [16] coupling
between solitons. Genetically close gyration effects of
rotation of the plane of polarization of the electromag-
netic radiation of excitons in gyrotropic materials were
presented in [17]. Surface waves at the boundary
between contacting enantiomorphic gyrotropic mate-
rials were studied phenomenologically in [18, 19] and
microscopically in [20].

Figure 1а shows the general 3D structure of
arrangement of (closed circles) uranium and (open
circles) oxygen atoms in the unit cube of similar UO2
and PuO2 crystals with an fcc lattice. One spatial diag-
onal with two U atoms at the corners of the cube and
two O atoms nearest to U atoms is distinguished. On
the periodic continuation of this diagonal, in the near-
est environment of each U atom, two O atoms are
located, constituting in combination a UO2 linear
“quasimolecule.” The period of the 3D crystal lattice
of this Fm3m group is r = 5.47 Å. The distance between
the uranium and oxygen atoms in the quasimolecule is
a =  = 2.37 Å. A computer simulation of a nano-
crystal consisting of 27 cubes that are shown in Fig. 1a
and are composed into a Rubik’s cube with the corre-
sponding displacements by a lattice constant is per-
formed. Figure 1b shows this nanocrystal in 3D space
in a projection where the spatial diagonal of cubes
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shown in Fig. 1a is perpendicular to the plane of the
figure. A standard 2D structure of hexagonal close
packing of atoms with surface oxygen and uranium
atoms is seen in this figure. The computer rotation of
the axes shows that a 1D crystal chain of quasimole-
cules orthogonal to the plane of the figure is located
behind each atom in Fig. 1b. The results of nanotech-
nological production of uranium dioxide were
reported in [4]. Materials with significantly improved
characteristics were obtained. For this reason, at the
first stage of investigation, it is of interest to examine
these characteristics for the nanocrystal, which is a
constituent unit of the hexagonal close packing
(Fig. 1b). This unit is represented in Fig. 2 in the form
of a trigonal prism consisting of three 1D crystal
chains of quasimolecules. Uranium atoms are shown
by thicker points than oxygen atoms according to their
masses. Study of the dynamic and spectral character-
istics of such a nanocrystal is of interest because its
results can be applied to more complex nanotubes,
where shear and longitudinal ring solitons were
observed [21]. This nanocrystal in the projection of

Fig. 1b is represented as a unit triangle on the right and
above the central point. Chains 1, 2, and 3, which are
elongated in the direction of the x axis in Fig. 2, in this
triangle in Fig. 1b correspond to the clockwise enu-
meration from the central point. All atoms in the pos-
itive direction of the diagonal (the x axis in Fig. 2) are
spaced by a distance of (4/3)a from the atoms of
chain 1, and the atoms of chain 3 are spaced by the
same distance of (4/3)a from the atoms of chain 2.
With a further displacement of the atoms of chain 3 by
the same distance of (4/3)a with the transfer to edge 1
of the prism, chain 3 coincides with chain 1. Thus, the
axis of the prism is the axis of local left rotation of the
third order indicated by arrows along the polygonal
“helix” passing through U atoms in Fig. 2.

As is known, Fermi, Pasta, and Ulam [27] observed
a fundamentally new return effect when studying non-
linear high-amplitude longitudinal vibrations in crys-
tal systems consisting of 32 and 64 coupled nonlinear
oscillators. Using this method, we first study the soli-
ton microdynamics of the crystal with the number of
atoms N = 90 and 126 presented in Fig. 2. We study
longitudinal collective vibrations of atoms along the
axis of the nanocrystal, i.e., in the direction of the spa-
tial diagonal. In particular, these vibrations are
responsible for the heat and mass transfer in the case
of the generation of the energy on one side of the plate
with the spatial diagonal orthogonal to the plane of the
plate and the release of the energy on the other side.

We used the following Lennard-Jones potentials
for the interaction between U and O atoms at the dis-

Fig. 1. Crystal structure of UO2. (a) Unit cube with (closed
circles) U and (open circles) O atoms. (b) Rubik’s cube
consisting of unit cubes shown in panel (a) with a spatial
diagonal orthogonal to the plane of the figure.

Fig. 2. Elementary hexagonal close packed nanocrystal
shown in Fig. 1b consisting of 1D crystal chains 1, 2, and 3
shifted along a polygonal helix in the direction of arrows.
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tance rUO, between two O atoms at the distance rOO,
and two U atoms at the distance rUU

 (1)

where  (β = 8/3) is the distance between the
nearest U atoms in the equilibrium state. These poten-
tials, in contrast to other potentials frequently used in
the nonlinear theory of oscillations, have correct
asymptotic behaviors at extremely high and extremely
small interatomic distances necessary for studying
high-amplitude vibrations. In Eqs. (1), the constant ε
determines the energies of equilibrium bound states at
which dV(r) = dr = 0. The experimental data from [6]
are described with the value ε = 12.5 eV. Mobile
boundary atoms at the same potentials interact with
immobile “frozen” atoms of the necessary solid shell
of fuel materials. The potentials were not detailed in
order to avoid excess parameterization. The test intro-
duction of different coupling constants of the same
order did not change the results.

Since UO2 and PuO2 have the same crystal struc-
ture, we used the following dimensionless variables for
universality: coordinates of atoms x, y, and z are pre-
sented in units of a; masses are given in units of the
mass M of uranium or plutonium; and times are given

in units of tc =  = 1.06–13 s, i.e., τ = t/tc. In
these units, the system of dynamic equations for the
coordinates of atoms has the compact general form

 (2)

Here,  and  are the coordinates of the “left”
and “right” O atoms with respect to the coordinate

 of the central U or Pu atom in the quasimole-
cule, the superscript i = 1, 2, 3 enumerates the 1D
crystal chain in Fig. 2, the superscript n is the number
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of the unit cell, the only nonzero matrix elements of
the matrix m(i, j) are m(1, 3) = 1 and m(3, 1) = –1, and
μ = MU/MO is the ratio of the masses of U and O.

It is of interest to study the spectrum of low-ampli-
tude phonon vibrations in this system. Since the unit
cell of the nanocrystal contains three triatomic quasi-
molecules, the spectrum will include nine individual
branches. When revealing fundamental features of the
spectrum, the U–O and O–O interactions were disre-
garded at the first stage. In this case, the correspond-
ing dispersion equation in an infinite nanocrystal
(Fig. 2) with three atoms in the unit cell after the
expansion in small amplitudes of vibrations for wave
solutions with the wave vector k and frequency ω has
the form

 (3)
where

The inverse dispersion relation is directly determined
from Eq. (3) in the form k = (1/4)arccos{[3B2(ω2 – 2B) –
(ω2 – 2B)3]/2B3}.

Equation (3) cubic in ω2 has the following three
solutions:

 (4)

Three dispersion relations (4) are shown in Fig. 3 by
respective lines 1, 2, and 3. It is remarkable that, in
addition to the standard acoustic branch , the
spectrum includes two quasioptical branches 
matching at k = 0 with the linear dependences of the
frequency on k. In this case, the group velocities
dω/dk of these branches are opposite in sign. The
indicated branches are similar to optical exciton
branches with the dispersion relations linear at k = 0
for gyrotropic optical materials, where the rotation of
the polarization plane of the electric field occurs [17–
20]. Taking into account the possibility of the separa-
tion of charges in UO2 quasimolecules, the vibrations
of quasimolecules can generate quadrupole and dipole
radiation [6]. The effect of spatial dispersion, which is
proportional to the first spatial derivative, with the fre-
quency linear in k is more significant in these materi-
als than the second-order effect with the quadratic
dependence of ω on k. Thus, the presence of matching
branches with the linear dependence at k = 0 is a sig-
nature of the existence of gyrotronic excitations. The
solutions of the system of nine equations including the
U–O and O–O interactions gave the remaining dis-
persion branches in agreement with experimental data
in the energy range up to 0.1 eV.

The right-hand sides of system (2) for the positions
of atoms shown in Fig. 2 are identically equal to zero.
To additionally test the stability of this crystal struc-
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ture, we performed the computer solution of Eqs. (2)
without any initial displacements and velocities. At the
first stage, to reveal the main dynamic and spectral
characteristics, we considered only the system of
17 uranium atoms in the structure shown in Fig. 2 dis-
regarding the potentials VOO and VUO. Figure 4a shows
the time dependence of displacements of all atoms at
the initial velocity of the uranium atom v0 = 0.1 with
the smallest initial x coordinate. It is seen that a soliton
wave with a complex internal structure moves at a con-
stant velocity v = 0.22 in the crystal. A weak but
noticeable trace of the second excitation moving at a
lower velocity is seen behind it. Details of these exci-
tations are clarified when considering the time evolu-
tion of the spatial distribution of the microdensity

 over the coordinate
 in each of the 1D chains

with the number i = 1, 2, 3. This dependence was rep-
resented as an animation video clip. Figure 4b shows
two joined frames of the video clip: at the time τ = 164
with group 1 of three close dependences and at the
time τ = 252 with the same group 2. The solid, dotted,
and dashed lines show the microdensity in 1D
chains 1, 2, and 3, respectively, in each group. The fast
soliton is represented by a high-density compression
hump moving at the velocity v = 0.22 (v = 0.4 ×
105 cm/s in dimensional units). The slow soliton is
represented by a rarefaction dip that moves at the
velocity v = 0.06 and follows the compression soliton.

The video film also demonstrates the internal
structure of the compression soliton. Figure 5 shows
the dynamics of the internal structure of the compres-
sion soliton on a magnified scale for short time inter-
vals. It is seen that the highest microdensity is reached
on 1D chains 1, 2, 3, and again 1 shown in Fig. 2 at τ =
(a) 163, (b) 169, (c) 176, and (d) 182, respectively. The
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1( ) ( ( ) ( ))i i i

n n nx x −
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( ) ( ) ( )
1( ) 0.5( ( ) ( ))i i i
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video clip shows how such periodic alternation occurs.
Figures 5 and 4a demonstrate the motion of the com-
pression gyrosoliton in the direction indicated by
arrows in the polygonal helix in Fig. 2. The character
of motion of the rarefaction gyrosoliton following the
compression gyrosoliton at a lower velocity is the
same.

To analyze the possibility of the generation of gyro-
solitons in dioxides, we considered a system of 90 U
and O atoms with the complete inclusion of the poten-
tials VOO and VUO. Figure 6a shows the time depen-
dence of the displacements of all atoms at the initial
velocity of the uranium atom v0 = 0.05 in chain 1 with
the smallest start x coordinate. As is seen in Fig. 6a, a
gyrosoliton wave with a complex internal structure
moves in the crystal at the constant velocity v = 0.19.
A trace of the second excitation moving at a lower
velocity is seen behind it. Figure 6b shows two joined
frames: at the time τ = 102 with group 1 consisting of
three close dependences and at the time τ = 168 with
the same group 2. For simplicity, only microdensities
of uranium atoms are shown. The system of solid, dot-

Fig. 3. Low-frequency dispersion dependences disregard-
ing O atoms. Quasioptical branches 2 and 3 have negative
and positive dispersions linear in the wave vector charac-
teristic of gyrotropic materials.

Fig. 4. (a) Time dependences of the displacement of atoms
demonstrating the propagation of a gyrosoliton through U
atoms disregarding O atoms. (b) Spatial distributions of the
microdensity demonstrating the displacement of gyrosoli-
ton compression density humps and rarefaction dips from
1 at τ = 164 to 2 at τ = 252. The solid, dotted, and dashed
lines are microdensities over 1D chains 1, 2, and 3, respec-
tively.
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ted, and dashed lines is the same as in Figs. 4 and 5.
The fast gyrosoliton is represented by a high-density
compression hump moving at the velocity v = 0.19.
The slow gyrosoliton is represented by a rarefaction
dip moving at the velocity v = 0.07. According to
Figs. 4 and 6, O atoms contract the distance between
the compression and rarefaction gyrosolitons.

The internal structure of the compression gyrosoli-
ton is seen in the detailed video film. Figure 7 shows
the dynamics of the internal structure of the compres-
sion gyrosoliton on a magnified scale. According to
Fig. 7, the highest microdensity at τ = 103 (Fig. 7а),
111 (Fig. 7b), 118 (Fig. 7c), and 126 (Fig. 7d) is
reached on the 1D chains 1, 2, 3, and again 1, respec-
tively, shown in Fig. 2.

Studying the spectrum of vibrations, as well as the
phonon spectrum, we took into account only the U–
U interaction in the nanocrystal with 126 U atoms. To
determine the spectral density ρ(k, ω), we used the
fast Fourier transform procedure. Figure 8 shows this
3D dependence. Branch 1 at a phase velocity of 0.21
spectrally shows the gyrosoliton represented in
dynamic dependences at the same velocity. Region 2
of the frequencies 0 < ω < 0.14 represents the reduced
system of branches of the phonon spectrum shown in
Fig. 3. The appearance of high-velocity branch 3 at the

velocity v3 = 0.63 is of interest. It can be attributed to
gyration.

The velocity of the displacement of an excitation
along the helix is higher than the velocity along the
axis visually determined from the dynamic depen-
dences, because the length passed over the helix in the
time in which the excitation passes along the axis of
the nanocrystal is larger. Partial spectra of vibrations
of individual chains, as well as phonons, include low-
frequency branches with negative dispersion.

It is of interest to study the possibility of diffusion
mass transfer of atoms over gyrosolitons similar to the
surfing diffusion of light atoms on soliton waves of the
sublattice of heavy atoms detected in [5]. We studied
the dynamics of the uranium atomic sublattice
(Fig. 2), where an impurity atom is located in the lon-
gitudinal axis at the initial time. A certain nonstoichi-
ometry was revealed in uranium dioxide samples. An
excess O atom was treated as such an impurity atom. In
addition to Eqs. (2), the system of equations includes

Fig. 5. Space–time dependences of the microdensity
demonstrating the motion of the gyrosoliton along the
helix. The maxima of the microdensity are located on (a)
chain 1 at τ = 163, (b) chain 2 at τ = 169, (c) chain 3 at τ =
176, and (d) chain 1 at τ = 182. Fig. 6. (a) Time dependences of the displacements of

atoms demonstrating the propagation of the gyrosoliton
over U and O atoms. (b) Spatial distributions of the micro-
density for U demonstrating the displacement of gyrosoli-
ton compression density humps and rarefaction dips from
1 at τ = 102 to 2 at τ = 168.
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three equations for the coordinates of impurity atoms
xp, yp, and zp, the first of which has the form

 (5)

where xi, yi, and zi are the coordinates of U atoms in
Fig. 2 and the inverse effect of the light impurity surfer
atom on vibrations of the main sublattice of heavy
atoms is disregarded as in Eq. (2).

The dynamic dependences of the x coordinates of
U and impurity atoms obtained by solving the system
of Eqs. (2) and (5) with the initial conditions xp = 25
and the initial velocity of the first U atom v0 = 0.4 is
shown in Fig. 9а, where 1 is the gyrosoliton trajectory
and 2 is the trajectory of the impurity atom. It is seen
that, owing to the interaction with the gyrosoliton, the
impurity atom is shifted, following the gyrosoliton,
toward large x coordinates. The displacement of the
impurity atom following the gyrosoliton is seen in
Fig. 9b, where the region of meeting of the gyrosoliton
and impurity atom is shown on a magnified scale. The
frequency of vibrations of the impurity atom ω = 0.3
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Fig. 7. Spatial distributions of the microdensity in the
nanocrystal with U and O atoms demonstrating the
motion of the gyrosoliton along the helix. The maxima of
the microdensity are located on (a) chain 1 at τ = 103, (b)
chain 2 at τ = 111, (c) chain 3 at τ = 118, and (d) chain 1 at
τ = 126.

Fig. 8. Three-dimensional spectral density versus the wave
vector and frequency demonstrating high-frequency
branches 1 and 3 and low-frequency branch 2.

Fig. 9. (a) Time dependences of displacements of atoms of
the nanocrystal and impurity atom demonstrating the tra-
jectories of motion of the (1) gyrosoliton and (2) impurity
atom with its intersection. (b) Magnified region of the
intersection of the trajectories of the soliton and impurity
atom shown in panel (а) demonstrating the entrainment of
the impurity atom by the gyrosoliton and an increase in the
frequency of vibrations of the impurity atom after their
meeting.
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increases after meeting with the gyrosoliton by a factor
of 4.

The dynamics of motion of the impurity atom is
shown in Fig. 10 in the form of the 3D dependence
xp = xp(yp, zp). The video clip shows that, before meet-
ing with the gyrosoliton, the impurity atom walks with
the rotation elements inside the prism shown in Fig. 2
in region 1 in Fig. 10. After meeting with the gyrosoli-
ton, the impurity atom is transferred to the rotation
about the c axis fixed with the direction of the gyro-
soliton with rise at larger x coordinates in region 2 in
Fig. 10. It was shown in [5] that, at stochastic genera-
tion of the energy at one boundary of the crystal and
the energy release at the other boundary, because of
the interaction of impurity atoms with solitons, impu-
rity atoms are stochastically displaced in different
directions (surfing diffusion) with mass transfer in one
direction. Figure 10 shows the main dynamic act of the
kinetic process of surfing–diffusion of the impurity
atom to the gyrosoliton. The stochastic generation of
the energy will be accompanied by a sequence of such
acts constituting diffusion mass transfer to the gyro-
soliton.

It is of interest to analyze the possibility of genera-
tion of gyrosolitons in crystal systems of larger dimen-
sions. The hexagon of atoms with the seventh atom at
the center shown in Fig. 11 is the element, which is
next in magnitude and complexity, of the hexagonal
crystal structure of UO2 with close packing in the
plane of the figure. Each unit triangle is the projection
of the above prism with 1D UO2 crystals. The number
of atoms in each 1D crystal, N = 100, is much larger
than that in the previous calculations. The neighbor-
ing triangles with one common side have clockwise
and counterclockwise directions of helical rotation.
Unclosed circles with arrows inside each unit triangle

specify the directions of such rotation at orthogonal
displacement. Digits 1 and 2 conditionally mark
prisms with these opposite rotations. It is noteworthy
that the directions of rotation coincide with each other
on the common sides of two neighboring triangles.

In order to keep symmetry, the initial condition was
taken such that the boundary atom of the 1D crystal
located at the center of the hexagon in Fig. 11 has the
dimensionless velocity v = 0.6 at the initial time. The
time dependences of displacements of atoms were cal-
culated in the range 0 < τ < T = 1200 with the division
of T into M = 1.2 × 105 intervals. These dependences
are shown in Fig. 12. Owing to the symmetry of
Fig. 11, the corresponding degeneracy is observed.

Figure 12 indicates that the motion of the primary
soliton at the velocity v = 0.6 is accompanied by the
motion of finite discrete secondary solitons with

Fig. 10. Three-dimensional representation of the trajec-
tory of motion of the impurity atom inside the nanocrystal:
(1) region of walks of the impurity atom inside the nano-
crystal with the rotation element before meeting with the
gyrosoliton and (2) trajectory of pronounced rotational
motion and entrainment of the impurity atom by the gyro-
soliton.

Fig. 11. Gyrosolitons in a group of six nanotubes constitut-
ing a hexagonal prism.

Fig. 12. Time dependences of displacements of atoms in a
group of nanotubes constituting a hexagonal prism.
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decreasing velocities. As in a smaller crystal, the alter-
nation of maxima of the density on circularly succes-
sive 1D crystals was observed for the primary soliton.
This indicates the helical motion conditionally indi-
cated by arrows in Fig. 11.
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